ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3mix3 GIF version

Theorem 3mix3 1086
Description: Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
Assertion
Ref Expression
3mix3 (𝜑 → (𝜓𝜒𝜑))

Proof of Theorem 3mix3
StepHypRef Expression
1 3mix1 1084 . 2 (𝜑 → (𝜑𝜓𝜒))
2 3orrot 902 . 2 ((𝜑𝜓𝜒) ↔ (𝜓𝜒𝜑))
31, 2sylib 131 1 (𝜑 → (𝜓𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 895
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640
This theorem depends on definitions:  df-bi 114  df-3or 897
This theorem is referenced by:  3mix3i  1089  3mix3d  1092  3jaob  1208  tpid3g  3511  funtpg  4978  nn01to3  8649  fztri3or  9005  qbtwnxr  9214
  Copyright terms: Public domain W3C validator