ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1 GIF version

Theorem addid1 7313
Description: 0 is an additive identity. (Contributed by Jim Kingdon, 16-Jan-2020.)
Assertion
Ref Expression
addid1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addid1
StepHypRef Expression
1 ax-0id 7146 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  (class class class)co 5543  cc 7041  0cc0 7043   + caddc 7046
This theorem was proved from axioms:  ax-0id 7146
This theorem is referenced by:  addid2  7314  00id  7316  addid1i  7317  addid1d  7324  addcan2  7356  subid  7394  subid1  7395  addid0  7544  shftval3  9853  reim0  9886  fisumcvg  10338
  Copyright terms: Public domain W3C validator