![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 00id | GIF version |
Description: 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
00id | ⊢ (0 + 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7173 | . 2 ⊢ 0 ∈ ℂ | |
2 | addid1 7313 | . 2 ⊢ (0 ∈ ℂ → (0 + 0) = 0) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (0 + 0) = 0 |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∈ wcel 1434 (class class class)co 5543 ℂcc 7041 0cc0 7043 + caddc 7046 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 ax-1cn 7131 ax-icn 7133 ax-addcl 7134 ax-mulcl 7136 ax-i2m1 7143 ax-0id 7146 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 |
This theorem is referenced by: negdii 7459 addgt0 7619 addgegt0 7620 addgtge0 7621 addge0 7622 add20 7645 recexaplem2 7809 crap0 8102 iap0 8321 decaddm10 8616 10p10e20 8652 iser0 9568 bcpasc 9790 abs00ap 10086 bezoutr1 10566 1kp2ke3k 10713 |
Copyright terms: Public domain | W3C validator |