![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdrmo | GIF version |
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdrmo.1 | ⊢ BOUNDED 𝜑 |
Ref | Expression |
---|---|
bdrmo | ⊢ BOUNDED ∃*𝑥 ∈ 𝑦 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdrmo.1 | . . . 4 ⊢ BOUNDED 𝜑 | |
2 | 1 | ax-bdex 10768 | . . 3 ⊢ BOUNDED ∃𝑥 ∈ 𝑦 𝜑 |
3 | 1 | bdreu 10804 | . . 3 ⊢ BOUNDED ∃!𝑥 ∈ 𝑦 𝜑 |
4 | 2, 3 | ax-bdim 10763 | . 2 ⊢ BOUNDED (∃𝑥 ∈ 𝑦 𝜑 → ∃!𝑥 ∈ 𝑦 𝜑) |
5 | rmo5 2570 | . 2 ⊢ (∃*𝑥 ∈ 𝑦 𝜑 ↔ (∃𝑥 ∈ 𝑦 𝜑 → ∃!𝑥 ∈ 𝑦 𝜑)) | |
6 | 4, 5 | bd0r 10774 | 1 ⊢ BOUNDED ∃*𝑥 ∈ 𝑦 𝜑 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wrex 2350 ∃!wreu 2351 ∃*wrmo 2352 BOUNDED wbd 10761 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-bd0 10762 ax-bdim 10763 ax-bdan 10764 ax-bdal 10767 ax-bdex 10768 ax-bdeq 10769 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-cleq 2075 df-clel 2078 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |