ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem1 GIF version

Theorem cnegexlem1 7402
Description: Addition cancellation of a real number from two complex numbers. Lemma for cnegex 7405. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem cnegexlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 7199 . . . 4 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
213ad2ant1 960 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
3 recn 7220 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 7220 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5 oveq2 5571 . . . . . . . . . . 11 ((𝐴 + 𝐵) = (𝐴 + 𝐶) → (𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶)))
6 simpr 108 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
7 simpll 496 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
8 simplrl 502 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
96, 7, 8addassd 7255 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝐴) + 𝐵) = (𝑥 + (𝐴 + 𝐵)))
10 simplrr 503 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
116, 7, 10addassd 7255 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝐴) + 𝐶) = (𝑥 + (𝐴 + 𝐶)))
129, 11eqeq12d 2097 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ (𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶))))
135, 12syl5ibr 154 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → ((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶)))
1413adantr 270 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → ((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶)))
15 addcom 7364 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 + 𝑥) = (𝑥 + 𝐴))
1615eqeq1d 2091 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 ↔ (𝑥 + 𝐴) = 0))
1716adantlr 461 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 ↔ (𝑥 + 𝐴) = 0))
18 oveq1 5570 . . . . . . . . . . . . . . 15 ((𝑥 + 𝐴) = 0 → ((𝑥 + 𝐴) + 𝐵) = (0 + 𝐵))
19 oveq1 5570 . . . . . . . . . . . . . . 15 ((𝑥 + 𝐴) = 0 → ((𝑥 + 𝐴) + 𝐶) = (0 + 𝐶))
2018, 19eqeq12d 2097 . . . . . . . . . . . . . 14 ((𝑥 + 𝐴) = 0 → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ (0 + 𝐵) = (0 + 𝐶)))
2120adantl 271 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝑥 + 𝐴) = 0) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ (0 + 𝐵) = (0 + 𝐶)))
22 addid2 7366 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵)
23 addid2 7366 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℂ → (0 + 𝐶) = 𝐶)
2422, 23eqeqan12d 2098 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((0 + 𝐵) = (0 + 𝐶) ↔ 𝐵 = 𝐶))
2524adantl 271 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((0 + 𝐵) = (0 + 𝐶) ↔ 𝐵 = 𝐶))
2625ad2antrr 472 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝑥 + 𝐴) = 0) → ((0 + 𝐵) = (0 + 𝐶) ↔ 𝐵 = 𝐶))
2721, 26bitrd 186 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝑥 + 𝐴) = 0) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶))
2827ex 113 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝐴) = 0 → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶)))
2917, 28sylbid 148 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶)))
3029imp 122 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝐴 + 𝑥) = 0) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶))
3114, 30sylibd 147 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶))
3231ex 113 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
334, 32sylan2 280 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
3433rexlimdva 2482 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
35343impb 1135 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
363, 35syl3an1 1203 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
372, 36mpd 13 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶))
38 oveq2 5571 . 2 (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
3937, 38impbid1 140 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  wrex 2354  (class class class)co 5563  cc 7093  cr 7094  0cc0 7095   + caddc 7098
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-resscn 7182  ax-1cn 7183  ax-icn 7185  ax-addcl 7186  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-i2m1 7195  ax-0id 7198  ax-rnegex 7199
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-iota 4917  df-fv 4960  df-ov 5566
This theorem is referenced by:  cnegexlem3  7404
  Copyright terms: Public domain W3C validator