ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem1 GIF version

Theorem cnegexlem1 7248
Description: Addition cancellation of a real number from two complex numbers. Lemma for cnegex 7251. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem cnegexlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 7050 . . . 4 (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
213ad2ant1 936 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
3 recn 7071 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
4 recn 7071 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5 oveq2 5547 . . . . . . . . . . 11 ((𝐴 + 𝐵) = (𝐴 + 𝐶) → (𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶)))
6 simpr 107 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
7 simpll 489 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
8 simplrl 495 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
96, 7, 8addassd 7106 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝐴) + 𝐵) = (𝑥 + (𝐴 + 𝐵)))
10 simplrr 496 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
116, 7, 10addassd 7106 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝐴) + 𝐶) = (𝑥 + (𝐴 + 𝐶)))
129, 11eqeq12d 2070 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ (𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶))))
135, 12syl5ibr 149 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → ((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶)))
1413adantr 265 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → ((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶)))
15 addcom 7210 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 + 𝑥) = (𝑥 + 𝐴))
1615eqeq1d 2064 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 ↔ (𝑥 + 𝐴) = 0))
1716adantlr 454 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 ↔ (𝑥 + 𝐴) = 0))
18 oveq1 5546 . . . . . . . . . . . . . . 15 ((𝑥 + 𝐴) = 0 → ((𝑥 + 𝐴) + 𝐵) = (0 + 𝐵))
19 oveq1 5546 . . . . . . . . . . . . . . 15 ((𝑥 + 𝐴) = 0 → ((𝑥 + 𝐴) + 𝐶) = (0 + 𝐶))
2018, 19eqeq12d 2070 . . . . . . . . . . . . . 14 ((𝑥 + 𝐴) = 0 → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ (0 + 𝐵) = (0 + 𝐶)))
2120adantl 266 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝑥 + 𝐴) = 0) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ (0 + 𝐵) = (0 + 𝐶)))
22 addid2 7212 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵)
23 addid2 7212 . . . . . . . . . . . . . . . 16 (𝐶 ∈ ℂ → (0 + 𝐶) = 𝐶)
2422, 23eqeqan12d 2071 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((0 + 𝐵) = (0 + 𝐶) ↔ 𝐵 = 𝐶))
2524adantl 266 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((0 + 𝐵) = (0 + 𝐶) ↔ 𝐵 = 𝐶))
2625ad2antrr 465 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝑥 + 𝐴) = 0) → ((0 + 𝐵) = (0 + 𝐶) ↔ 𝐵 = 𝐶))
2721, 26bitrd 181 . . . . . . . . . . . 12 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝑥 + 𝐴) = 0) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶))
2827ex 112 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝑥 + 𝐴) = 0 → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶)))
2917, 28sylbid 143 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶)))
3029imp 119 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝐴 + 𝑥) = 0) → (((𝑥 + 𝐴) + 𝐵) = ((𝑥 + 𝐴) + 𝐶) ↔ 𝐵 = 𝐶))
3114, 30sylibd 142 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) ∧ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶))
3231ex 112 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
334, 32sylan2 274 . . . . . 6 (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) ∧ 𝑥 ∈ ℝ) → ((𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
3433rexlimdva 2450 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
35343impb 1111 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
363, 35syl3an1 1179 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)))
372, 36mpd 13 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶))
38 oveq2 5547 . 2 (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
3937, 38impbid1 134 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 896   = wceq 1259  wcel 1409  wrex 2324  (class class class)co 5539  cc 6944  cr 6945  0cc0 6946   + caddc 6949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-resscn 7033  ax-1cn 7034  ax-icn 7036  ax-addcl 7037  ax-mulcl 7039  ax-addcom 7041  ax-addass 7043  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-iota 4894  df-fv 4937  df-ov 5542
This theorem is referenced by:  cnegexlem3  7250
  Copyright terms: Public domain W3C validator