ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqfnov GIF version

Theorem eqfnov 5877
Description: Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.)
Assertion
Ref Expression
eqfnov ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem eqfnov
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqfnfv2 5519 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) = (𝐺𝑧))))
2 fveq2 5421 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 fveq2 5421 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐺𝑧) = (𝐺‘⟨𝑥, 𝑦⟩))
42, 3eqeq12d 2154 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = (𝐺‘⟨𝑥, 𝑦⟩)))
5 df-ov 5777 . . . . . 6 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
6 df-ov 5777 . . . . . 6 (𝑥𝐺𝑦) = (𝐺‘⟨𝑥, 𝑦⟩)
75, 6eqeq12i 2153 . . . . 5 ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = (𝐺‘⟨𝑥, 𝑦⟩))
84, 7syl6bbr 197 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
98ralxp 4682 . . 3 (∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) = (𝐺𝑧) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))
109anbi2i 452 . 2 (((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) = (𝐺𝑧)) ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
111, 10syl6bb 195 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wral 2416  cop 3530   × cxp 4537   Fn wfn 5118  cfv 5123  (class class class)co 5774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-ov 5777
This theorem is referenced by:  eqfnov2  5878
  Copyright terms: Public domain W3C validator