ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exrot3 GIF version

Theorem exrot3 1596
Description: Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exrot3 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑦𝑧𝑥𝜑)

Proof of Theorem exrot3
StepHypRef Expression
1 excom13 1595 . 2 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑧𝑦𝑥𝜑)
2 excom 1570 . 2 (∃𝑧𝑦𝑥𝜑 ↔ ∃𝑦𝑧𝑥𝜑)
31, 2bitri 177 1 (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑦𝑧𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 102  wex 1397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-ial 1443
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  opabm  4044  rexiunxp  4505  dmoprab  5612  rnoprab  5614  cnvoprab  5882  xpassen  6334  dmaddpq  6534  dmmulpq  6535
  Copyright terms: Public domain W3C validator