![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funin | GIF version |
Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
funin | ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3187 | . 2 ⊢ (𝐹 ∩ 𝐺) ⊆ 𝐹 | |
2 | funss 4944 | . 2 ⊢ ((𝐹 ∩ 𝐺) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹 ∩ 𝐺))) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (Fun 𝐹 → Fun (𝐹 ∩ 𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∩ cin 2973 ⊆ wss 2974 Fun wfun 4920 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-in 2980 df-ss 2987 df-br 3788 df-opab 3842 df-rel 4372 df-cnv 4373 df-co 4374 df-fun 4928 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |