ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funin GIF version

Theorem funin 4995
Description: The intersection with a function is a function. Exercise 14(a) of [Enderton] p. 53. (Contributed by NM, 19-Mar-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funin (Fun 𝐹 → Fun (𝐹𝐺))

Proof of Theorem funin
StepHypRef Expression
1 inss1 3187 . 2 (𝐹𝐺) ⊆ 𝐹
2 funss 4944 . 2 ((𝐹𝐺) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐺)))
31, 2ax-mp 7 1 (Fun 𝐹 → Fun (𝐹𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  cin 2973  wss 2974  Fun wfun 4920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-in 2980  df-ss 2987  df-br 3788  df-opab 3842  df-rel 4372  df-cnv 4373  df-co 4374  df-fun 4928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator