ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcmpted GIF version

Theorem limcmpted 12801
Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
Hypotheses
Ref Expression
limcmpted.a (𝜑𝐴 ⊆ ℂ)
limcmpted.b (𝜑𝐵 ∈ ℂ)
limcmpted.f ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
limcmpted (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   𝐷(𝑧)

Proof of Theorem limcmpted
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2281 . . . . . 6 𝑤𝐷
2 nfcsb1v 3035 . . . . . 6 𝑧𝑤 / 𝑧𝐷
3 csbeq1a 3012 . . . . . 6 (𝑧 = 𝑤𝐷 = 𝑤 / 𝑧𝐷)
41, 2, 3cbvmpt 4023 . . . . 5 (𝑧𝐴𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷)
54a1i 9 . . . 4 (𝜑 → (𝑧𝐴𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷))
65oveq1d 5789 . . 3 (𝜑 → ((𝑧𝐴𝐷) lim 𝐵) = ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵))
76eleq2d 2209 . 2 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ 𝐶 ∈ ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵)))
8 limcmpted.f . . . . 5 ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
98fmpttd 5575 . . . 4 (𝜑 → (𝑧𝐴𝐷):𝐴⟶ℂ)
104feq1i 5265 . . . 4 ((𝑧𝐴𝐷):𝐴⟶ℂ ↔ (𝑤𝐴𝑤 / 𝑧𝐷):𝐴⟶ℂ)
119, 10sylib 121 . . 3 (𝜑 → (𝑤𝐴𝑤 / 𝑧𝐷):𝐴⟶ℂ)
12 limcmpted.a . . 3 (𝜑𝐴 ⊆ ℂ)
13 limcmpted.b . . 3 (𝜑𝐵 ∈ ℂ)
14 nfcv 2281 . . . 4 𝑧𝐴
1514, 2nfmpt 4020 . . 3 𝑧(𝑤𝐴𝑤 / 𝑧𝐷)
1611, 12, 13, 15ellimc3apf 12798 . 2 (𝜑 → (𝐶 ∈ ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥))))
17 eqid 2139 . . . . . . . . . 10 (𝑤𝐴𝑤 / 𝑧𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷)
18 eqcom 2141 . . . . . . . . . . 11 (𝑧 = 𝑤𝑤 = 𝑧)
19 eqcom 2141 . . . . . . . . . . 11 (𝐷 = 𝑤 / 𝑧𝐷𝑤 / 𝑧𝐷 = 𝐷)
203, 18, 193imtr3i 199 . . . . . . . . . 10 (𝑤 = 𝑧𝑤 / 𝑧𝐷 = 𝐷)
21 simpr 109 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧𝐴)
2217, 20, 21, 8fvmptd3 5514 . . . . . . . . 9 ((𝜑𝑧𝐴) → ((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) = 𝐷)
2322fvoveq1d 5796 . . . . . . . 8 ((𝜑𝑧𝐴) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) = (abs‘(𝐷𝐶)))
2423breq1d 3939 . . . . . . 7 ((𝜑𝑧𝐴) → ((abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐷𝐶)) < 𝑥))
2524imbi2d 229 . . . . . 6 ((𝜑𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2625ralbidva 2433 . . . . 5 (𝜑 → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2726rexbidv 2438 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2827ralbidv 2437 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2928anbi2d 459 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
307, 16, 293bitrd 213 1 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417  csb 3003  wss 3071   class class class wbr 3929  cmpt 3989  wf 5119  cfv 5123  (class class class)co 5774  cc 7618   < clt 7800  cmin 7933   # cap 8343  +crp 9441  abscabs 10769   lim climc 12792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pm 6545  df-limced 12794
This theorem is referenced by:  limccnp2cntop  12815  limccoap  12816
  Copyright terms: Public domain W3C validator