ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfiinxy GIF version

Theorem nfiinxy 3712
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by Mario Carneiro, 25-Jan-2014.)
Hypotheses
Ref Expression
nfiunxy.1 𝑦𝐴
nfiunxy.2 𝑦𝐵
Assertion
Ref Expression
nfiinxy 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiinxy
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iin 3688 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
2 nfiunxy.1 . . . 4 𝑦𝐴
3 nfiunxy.2 . . . . 5 𝑦𝐵
43nfcri 2188 . . . 4 𝑦 𝑧𝐵
52, 4nfralxy 2377 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2198 . 2 𝑦{𝑧 ∣ ∀𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2191 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wcel 1409  {cab 2042  wnfc 2181  wral 2323   ciin 3686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-iin 3688
This theorem is referenced by:  iinab  3746
  Copyright terms: Public domain W3C validator