Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.28m GIF version

Theorem r19.28m 3347
 Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.)
Hypothesis
Ref Expression
r19.28m.1 𝑥𝜑
Assertion
Ref Expression
r19.28m (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem r19.28m
StepHypRef Expression
1 r19.28m.1 . . . 4 𝑥𝜑
21r19.3rm 3346 . . 3 (∃𝑥 𝑥𝐴 → (𝜑 ↔ ∀𝑥𝐴 𝜑))
32anbi1d 453 . 2 (∃𝑥 𝑥𝐴 → ((𝜑 ∧ ∀𝑥𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓)))
4 r19.26 2490 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
53, 4syl6rbbr 197 1 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝐴 𝜓)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103  Ⅎwnf 1390  ∃wex 1422   ∈ wcel 1434  ∀wral 2353 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-cleq 2076  df-clel 2079  df-ral 2358 This theorem is referenced by:  r19.28mv  3350  raaanlem  3363
 Copyright terms: Public domain W3C validator