ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raldifb GIF version

Theorem raldifb 3110
Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
Assertion
Ref Expression
raldifb (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem raldifb
StepHypRef Expression
1 impexp 254 . . . 4 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥𝐴 → (𝑥𝐵𝜑)))
21bicomi 127 . . 3 ((𝑥𝐴 → (𝑥𝐵𝜑)) ↔ ((𝑥𝐴𝑥𝐵) → 𝜑))
3 df-nel 2315 . . . . . 6 (𝑥𝐵 ↔ ¬ 𝑥𝐵)
43anbi2i 438 . . . . 5 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 eldif 2954 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
65bicomi 127 . . . . 5 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ 𝑥 ∈ (𝐴𝐵))
74, 6bitri 177 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐴𝐵))
87imbi1i 231 . . 3 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥 ∈ (𝐴𝐵) → 𝜑))
92, 8bitri 177 . 2 ((𝑥𝐴 → (𝑥𝐵𝜑)) ↔ (𝑥 ∈ (𝐴𝐵) → 𝜑))
109ralbii2 2351 1 (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wcel 1409  wnel 2314  wral 2323  cdif 2941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-nel 2315  df-ral 2328  df-v 2576  df-dif 2947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator