ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relresfld GIF version

Theorem relresfld 4874
Description: Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.)
Assertion
Ref Expression
relresfld (Rel 𝑅 → (𝑅 𝑅) = 𝑅)

Proof of Theorem relresfld
StepHypRef Expression
1 relfld 4873 . . . 4 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
21reseq2d 4639 . . 3 (Rel 𝑅 → (𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
3 resundi 4652 . . 3 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))
4 eqtr 2073 . . . 4 (((𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))) → (𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)))
5 resss 4662 . . . . 5 (𝑅 ↾ ran 𝑅) ⊆ 𝑅
6 resdm 4676 . . . . 5 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
7 ssequn2 3143 . . . . . 6 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 ↔ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅)
8 uneq1 3117 . . . . . . . . 9 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)))
98eqeq2d 2067 . . . . . . . 8 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) ↔ (𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅))))
10 eqtr 2073 . . . . . . . . 9 (((𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) ∧ (𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅) → (𝑅 𝑅) = 𝑅)
1110ex 112 . . . . . . . 8 ((𝑅 𝑅) = (𝑅 ∪ (𝑅 ↾ ran 𝑅)) → ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → (𝑅 𝑅) = 𝑅))
129, 11syl6bi 156 . . . . . . 7 ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → (𝑅 𝑅) = 𝑅)))
1312com3r 77 . . . . . 6 ((𝑅 ∪ (𝑅 ↾ ran 𝑅)) = 𝑅 → ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅)))
147, 13sylbi 118 . . . . 5 ((𝑅 ↾ ran 𝑅) ⊆ 𝑅 → ((𝑅 ↾ dom 𝑅) = 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅)))
155, 6, 14mpsyl 63 . . . 4 (Rel 𝑅 → ((𝑅 𝑅) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅)) → (𝑅 𝑅) = 𝑅))
164, 15syl5com 29 . . 3 (((𝑅 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ∧ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) = ((𝑅 ↾ dom 𝑅) ∪ (𝑅 ↾ ran 𝑅))) → (Rel 𝑅 → (𝑅 𝑅) = 𝑅))
172, 3, 16sylancl 398 . 2 (Rel 𝑅 → (Rel 𝑅 → (𝑅 𝑅) = 𝑅))
1817pm2.43i 47 1 (Rel 𝑅 → (𝑅 𝑅) = 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  cun 2942  wss 2944   cuni 3607  dom cdm 4372  ran crn 4373  cres 4374  Rel wrel 4377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-xp 4378  df-rel 4379  df-cnv 4380  df-dm 4382  df-rn 4383  df-res 4384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator