![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resdmdfsn | GIF version |
Description: Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.) |
Ref | Expression |
---|---|
resdmdfsn | ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indif1 3225 | . . . 4 ⊢ ((V ∖ {𝑋}) ∩ dom 𝑅) = ((V ∩ dom 𝑅) ∖ {𝑋}) | |
2 | incom 3174 | . . . . . 6 ⊢ (V ∩ dom 𝑅) = (dom 𝑅 ∩ V) | |
3 | inv1 3296 | . . . . . 6 ⊢ (dom 𝑅 ∩ V) = dom 𝑅 | |
4 | 2, 3 | eqtri 2103 | . . . . 5 ⊢ (V ∩ dom 𝑅) = dom 𝑅 |
5 | 4 | difeq1i 3096 | . . . 4 ⊢ ((V ∩ dom 𝑅) ∖ {𝑋}) = (dom 𝑅 ∖ {𝑋}) |
6 | 1, 5 | eqtri 2103 | . . 3 ⊢ ((V ∖ {𝑋}) ∩ dom 𝑅) = (dom 𝑅 ∖ {𝑋}) |
7 | 6 | reseq2i 4657 | . 2 ⊢ (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋})) |
8 | resindm 4700 | . 2 ⊢ (Rel 𝑅 → (𝑅 ↾ ((V ∖ {𝑋}) ∩ dom 𝑅)) = (𝑅 ↾ (V ∖ {𝑋}))) | |
9 | 7, 8 | syl5reqr 2130 | 1 ⊢ (Rel 𝑅 → (𝑅 ↾ (V ∖ {𝑋})) = (𝑅 ↾ (dom 𝑅 ∖ {𝑋}))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 Vcvv 2610 ∖ cdif 2979 ∩ cin 2981 {csn 3416 dom cdm 4391 ↾ cres 4393 Rel wrel 4396 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-br 3806 df-opab 3860 df-xp 4397 df-rel 4398 df-dm 4401 df-res 4403 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |