Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbnfc2 GIF version

Theorem sbnfc2 2933
 Description: Two ways of expressing "𝑥 is (effectively) not free in 𝐴." (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
sbnfc2 (𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
Distinct variable groups:   𝑥,𝑦,𝑧   𝑦,𝐴,𝑧
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbnfc2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 vex 2577 . . . . 5 𝑦 ∈ V
2 csbtt 2889 . . . . 5 ((𝑦 ∈ V ∧ 𝑥𝐴) → 𝑦 / 𝑥𝐴 = 𝐴)
31, 2mpan 408 . . . 4 (𝑥𝐴𝑦 / 𝑥𝐴 = 𝐴)
4 vex 2577 . . . . 5 𝑧 ∈ V
5 csbtt 2889 . . . . 5 ((𝑧 ∈ V ∧ 𝑥𝐴) → 𝑧 / 𝑥𝐴 = 𝐴)
64, 5mpan 408 . . . 4 (𝑥𝐴𝑧 / 𝑥𝐴 = 𝐴)
73, 6eqtr4d 2091 . . 3 (𝑥𝐴𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
87alrimivv 1771 . 2 (𝑥𝐴 → ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
9 nfv 1437 . . 3 𝑤𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴
10 eleq2 2117 . . . . . 6 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → (𝑤𝑦 / 𝑥𝐴𝑤𝑧 / 𝑥𝐴))
11 sbsbc 2790 . . . . . . 7 ([𝑦 / 𝑥]𝑤𝐴[𝑦 / 𝑥]𝑤𝐴)
12 sbcel2g 2898 . . . . . . . 8 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑤𝐴𝑤𝑦 / 𝑥𝐴))
131, 12ax-mp 7 . . . . . . 7 ([𝑦 / 𝑥]𝑤𝐴𝑤𝑦 / 𝑥𝐴)
1411, 13bitri 177 . . . . . 6 ([𝑦 / 𝑥]𝑤𝐴𝑤𝑦 / 𝑥𝐴)
15 sbsbc 2790 . . . . . . 7 ([𝑧 / 𝑥]𝑤𝐴[𝑧 / 𝑥]𝑤𝐴)
16 sbcel2g 2898 . . . . . . . 8 (𝑧 ∈ V → ([𝑧 / 𝑥]𝑤𝐴𝑤𝑧 / 𝑥𝐴))
174, 16ax-mp 7 . . . . . . 7 ([𝑧 / 𝑥]𝑤𝐴𝑤𝑧 / 𝑥𝐴)
1815, 17bitri 177 . . . . . 6 ([𝑧 / 𝑥]𝑤𝐴𝑤𝑧 / 𝑥𝐴)
1910, 14, 183bitr4g 216 . . . . 5 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → ([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
20192alimi 1361 . . . 4 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → ∀𝑦𝑧([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
21 sbnf2 1873 . . . 4 (Ⅎ𝑥 𝑤𝐴 ↔ ∀𝑦𝑧([𝑦 / 𝑥]𝑤𝐴 ↔ [𝑧 / 𝑥]𝑤𝐴))
2220, 21sylibr 141 . . 3 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴 → Ⅎ𝑥 𝑤𝐴)
239, 22nfcd 2189 . 2 (∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑥𝐴)
248, 23impbii 121 1 (𝑥𝐴 ↔ ∀𝑦𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
 Colors of variables: wff set class Syntax hints:   ↔ wb 102  ∀wal 1257   = wceq 1259  Ⅎwnf 1365   ∈ wcel 1409  [wsb 1661  Ⅎwnfc 2181  Vcvv 2574  [wsbc 2786  ⦋csb 2879 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sbc 2787  df-csb 2880 This theorem is referenced by:  eusvnf  4212
 Copyright terms: Public domain W3C validator