![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sess1 | GIF version |
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
sess1 | ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 107 | . . . . . 6 ⊢ ((𝑅 ⊆ 𝑆 ∧ 𝑦 ∈ 𝐴) → 𝑅 ⊆ 𝑆) | |
2 | 1 | ssbrd 3834 | . . . . 5 ⊢ ((𝑅 ⊆ 𝑆 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑥 → 𝑦𝑆𝑥)) |
3 | 2 | ss2rabdv 3076 | . . . 4 ⊢ (𝑅 ⊆ 𝑆 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥}) |
4 | ssexg 3925 | . . . . 5 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∧ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
5 | 4 | ex 113 | . . . 4 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
6 | 3, 5 | syl 14 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → ({𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
7 | 6 | ralimdv 2431 | . 2 ⊢ (𝑅 ⊆ 𝑆 → (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
8 | df-se 4096 | . 2 ⊢ (𝑆 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑆𝑥} ∈ V) | |
9 | df-se 4096 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
10 | 7, 8, 9 | 3imtr4g 203 | 1 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1434 ∀wral 2349 {crab 2353 Vcvv 2602 ⊆ wss 2974 class class class wbr 3793 Se wse 4092 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rab 2358 df-v 2604 df-in 2980 df-ss 2987 df-br 3794 df-se 4096 |
This theorem is referenced by: seeq1 4102 |
Copyright terms: Public domain | W3C validator |