![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > setindft | GIF version |
Description: Axiom of set-induction with a DV condition replaced with a non-freeness hypothesis (Contributed by BJ, 22-Nov-2019.) |
Ref | Expression |
---|---|
setindft | ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1475 | . . 3 ⊢ Ⅎ𝑥∀𝑥Ⅎ𝑦𝜑 | |
2 | nfv 1462 | . . . . . 6 ⊢ Ⅎ𝑧∀𝑥Ⅎ𝑦𝜑 | |
3 | nfnf1 1477 | . . . . . . 7 ⊢ Ⅎ𝑦Ⅎ𝑦𝜑 | |
4 | 3 | nfal 1509 | . . . . . 6 ⊢ Ⅎ𝑦∀𝑥Ⅎ𝑦𝜑 |
5 | nfsbt 1892 | . . . . . 6 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦[𝑧 / 𝑥]𝜑) | |
6 | nfv 1462 | . . . . . . 7 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
7 | 6 | a1i 9 | . . . . . 6 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
8 | sbequ 1762 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
9 | 8 | a1i 9 | . . . . . 6 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))) |
10 | 2, 4, 5, 7, 9 | cbvrald 10749 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑)) |
11 | 10 | biimpd 142 | . . . 4 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → ∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑)) |
12 | 11 | imim1d 74 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ((∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑))) |
13 | 1, 12 | alimd 1455 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥(∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑))) |
14 | ax-setind 4288 | . 2 ⊢ (∀𝑥(∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑) | |
15 | 13, 14 | syl6 33 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → (∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) → ∀𝑥𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1283 Ⅎwnf 1390 [wsb 1686 ∀wral 2349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-setind 4288 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-cleq 2075 df-clel 2078 df-ral 2354 |
This theorem is referenced by: setindf 10919 |
Copyright terms: Public domain | W3C validator |