Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  vjust GIF version

Theorem vjust 2575
 Description: Soundness justification theorem for df-v 2576. (Contributed by Rodolfo Medina, 27-Apr-2010.)
Assertion
Ref Expression
vjust {𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}

Proof of Theorem vjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equid 1605 . . . . 5 𝑥 = 𝑥
21sbt 1683 . . . 4 [𝑧 / 𝑥]𝑥 = 𝑥
3 equid 1605 . . . . 5 𝑦 = 𝑦
43sbt 1683 . . . 4 [𝑧 / 𝑦]𝑦 = 𝑦
52, 42th 167 . . 3 ([𝑧 / 𝑥]𝑥 = 𝑥 ↔ [𝑧 / 𝑦]𝑦 = 𝑦)
6 df-clab 2043 . . 3 (𝑧 ∈ {𝑥𝑥 = 𝑥} ↔ [𝑧 / 𝑥]𝑥 = 𝑥)
7 df-clab 2043 . . 3 (𝑧 ∈ {𝑦𝑦 = 𝑦} ↔ [𝑧 / 𝑦]𝑦 = 𝑦)
85, 6, 73bitr4i 205 . 2 (𝑧 ∈ {𝑥𝑥 = 𝑥} ↔ 𝑧 ∈ {𝑦𝑦 = 𝑦})
98eqriv 2053 1 {𝑥𝑥 = 𝑥} = {𝑦𝑦 = 𝑦}
 Colors of variables: wff set class Syntax hints:   = wceq 1259   ∈ wcel 1409  [wsb 1661  {cab 2042 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator