MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bija Structured version   Visualization version   GIF version

Theorem bija 368
Description: Combine antecedents into a single biconditional. This inference, reminiscent of ja 171, is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im 251 and pm5.21im 362). (Contributed by Wolf Lammen, 13-May-2013.)
Hypotheses
Ref Expression
bija.1 (𝜑 → (𝜓𝜒))
bija.2 𝜑 → (¬ 𝜓𝜒))
Assertion
Ref Expression
bija ((𝜑𝜓) → 𝜒)

Proof of Theorem bija
StepHypRef Expression
1 biimpr 208 . . 3 ((𝜑𝜓) → (𝜓𝜑))
2 bija.1 . . 3 (𝜑 → (𝜓𝜒))
31, 2syli 38 . 2 ((𝜑𝜓) → (𝜓𝜒))
4 biimp 203 . . . 4 ((𝜑𝜓) → (𝜑𝜓))
54con3d 146 . . 3 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
6 bija.2 . . 3 𝜑 → (¬ 𝜓𝜒))
75, 6syli 38 . 2 ((𝜑𝜓) → (¬ 𝜓𝜒))
83, 7pm2.61d 168 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195
This theorem is referenced by:  equvel  2330  2lgsoddprm  24854  bj-bibibi  31546  wl-aleq  32300  wl-nfeqfb  32301  rp-fakeimass  36675  rp-fakenanass  36678
  Copyright terms: Public domain W3C validator