MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-div Structured version   Visualization version   GIF version

Definition df-div 10536
Description: Define division. Theorem divmuli 10630 relates it to multiplication, and divcli 10618 and redivcli 10643 prove its closure laws. (Contributed by NM, 2-Feb-1995.) Use divval 10538 instead. (Revised by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.)
Assertion
Ref Expression
df-div / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-div
StepHypRef Expression
1 cdiv 10535 . 2 class /
2 vx . . 3 setvar 𝑥
3 vy . . 3 setvar 𝑦
4 cc 9790 . . 3 class
5 cc0 9792 . . . . 5 class 0
65csn 4124 . . . 4 class {0}
74, 6cdif 3536 . . 3 class (ℂ ∖ {0})
83cv 1473 . . . . . 6 class 𝑦
9 vz . . . . . . 7 setvar 𝑧
109cv 1473 . . . . . 6 class 𝑧
11 cmul 9797 . . . . . 6 class ·
128, 10, 11co 6526 . . . . 5 class (𝑦 · 𝑧)
132cv 1473 . . . . 5 class 𝑥
1412, 13wceq 1474 . . . 4 wff (𝑦 · 𝑧) = 𝑥
1514, 9, 4crio 6487 . . 3 class (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)
162, 3, 4, 7, 15cmpt2 6528 . 2 class (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
171, 16wceq 1474 1 wff / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
Colors of variables: wff setvar class
This definition is referenced by:  1div0  10537  divval  10538  elq  11624  cnflddiv  19543  divcn  22426  1div0apr  26509
  Copyright terms: Public domain W3C validator