MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lidl Structured version   Visualization version   GIF version

Definition df-lidl 19093
Description: Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Assertion
Ref Expression
df-lidl LIdeal = (LSubSp ∘ ringLMod)

Detailed syntax breakdown of Definition df-lidl
StepHypRef Expression
1 clidl 19089 . 2 class LIdeal
2 clss 18851 . . 3 class LSubSp
3 crglmod 19088 . . 3 class ringLMod
42, 3ccom 5078 . 2 class (LSubSp ∘ ringLMod)
51, 4wceq 1480 1 wff LIdeal = (LSubSp ∘ ringLMod)
Colors of variables: wff setvar class
This definition is referenced by:  lidlval  19111
  Copyright terms: Public domain W3C validator