MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-p1 Structured version   Visualization version   GIF version

Definition df-p1 16961
Description: Define poset unit. (Contributed by NM, 22-Oct-2011.)
Assertion
Ref Expression
df-p1 1. = (𝑝 ∈ V ↦ ((lub‘𝑝)‘(Base‘𝑝)))

Detailed syntax breakdown of Definition df-p1
StepHypRef Expression
1 cp1 16959 . 2 class 1.
2 vp . . 3 setvar 𝑝
3 cvv 3186 . . 3 class V
42cv 1479 . . . . 5 class 𝑝
5 cbs 15781 . . . . 5 class Base
64, 5cfv 5847 . . . 4 class (Base‘𝑝)
7 club 16863 . . . . 5 class lub
84, 7cfv 5847 . . . 4 class (lub‘𝑝)
96, 8cfv 5847 . . 3 class ((lub‘𝑝)‘(Base‘𝑝))
102, 3, 9cmpt 4673 . 2 class (𝑝 ∈ V ↦ ((lub‘𝑝)‘(Base‘𝑝)))
111, 10wceq 1480 1 wff 1. = (𝑝 ∈ V ↦ ((lub‘𝑝)‘(Base‘𝑝)))
Colors of variables: wff setvar class
This definition is referenced by:  p1val  16963
  Copyright terms: Public domain W3C validator