MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-p0 Structured version   Visualization version   GIF version

Definition df-p0 16960
Description: Define poset zero. (Contributed by NM, 12-Oct-2011.)
Assertion
Ref Expression
df-p0 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝)))

Detailed syntax breakdown of Definition df-p0
StepHypRef Expression
1 cp0 16958 . 2 class 0.
2 vp . . 3 setvar 𝑝
3 cvv 3186 . . 3 class V
42cv 1479 . . . . 5 class 𝑝
5 cbs 15781 . . . . 5 class Base
64, 5cfv 5847 . . . 4 class (Base‘𝑝)
7 cglb 16864 . . . . 5 class glb
84, 7cfv 5847 . . . 4 class (glb‘𝑝)
96, 8cfv 5847 . . 3 class ((glb‘𝑝)‘(Base‘𝑝))
102, 3, 9cmpt 4673 . 2 class (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝)))
111, 10wceq 1480 1 wff 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝)))
Colors of variables: wff setvar class
This definition is referenced by:  p0val  16962
  Copyright terms: Public domain W3C validator