Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ppi Structured version   Visualization version   GIF version

Definition df-ppi 24871
 Description: Define the prime π function, which counts the number of primes less than or equal to 𝑥, see definition in [ApostolNT] p. 8. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
df-ppi π = (𝑥 ∈ ℝ ↦ (#‘((0[,]𝑥) ∩ ℙ)))

Detailed syntax breakdown of Definition df-ppi
StepHypRef Expression
1 cppi 24865 . 2 class π
2 vx . . 3 setvar 𝑥
3 cr 9973 . . 3 class
4 cc0 9974 . . . . . 6 class 0
52cv 1522 . . . . . 6 class 𝑥
6 cicc 12216 . . . . . 6 class [,]
74, 5, 6co 6690 . . . . 5 class (0[,]𝑥)
8 cprime 15432 . . . . 5 class
97, 8cin 3606 . . . 4 class ((0[,]𝑥) ∩ ℙ)
10 chash 13157 . . . 4 class #
119, 10cfv 5926 . . 3 class (#‘((0[,]𝑥) ∩ ℙ))
122, 3, 11cmpt 4762 . 2 class (𝑥 ∈ ℝ ↦ (#‘((0[,]𝑥) ∩ ℙ)))
131, 12wceq 1523 1 wff π = (𝑥 ∈ ℝ ↦ (#‘((0[,]𝑥) ∩ ℙ)))
 Colors of variables: wff setvar class This definition is referenced by:  ppival  24898  ppif  24901
 Copyright terms: Public domain W3C validator