MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppival Structured version   Visualization version   GIF version

Theorem ppival 25704
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
ppival (𝐴 ∈ ℝ → (π𝐴) = (♯‘((0[,]𝐴) ∩ ℙ)))

Proof of Theorem ppival
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7164 . . . 4 (𝑥 = 𝐴 → (0[,]𝑥) = (0[,]𝐴))
21ineq1d 4188 . . 3 (𝑥 = 𝐴 → ((0[,]𝑥) ∩ ℙ) = ((0[,]𝐴) ∩ ℙ))
32fveq2d 6674 . 2 (𝑥 = 𝐴 → (♯‘((0[,]𝑥) ∩ ℙ)) = (♯‘((0[,]𝐴) ∩ ℙ)))
4 df-ppi 25677 . 2 π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ)))
5 fvex 6683 . 2 (♯‘((0[,]𝐴) ∩ ℙ)) ∈ V
63, 4, 5fvmpt 6768 1 (𝐴 ∈ ℝ → (π𝐴) = (♯‘((0[,]𝐴) ∩ ℙ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cin 3935  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  [,]cicc 12742  chash 13691  cprime 16015  πcppi 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-ppi 25677
This theorem is referenced by:  ppival2  25705  ppival2g  25706  ppifl  25737  ppiwordi  25739  chtleppi  25786
  Copyright terms: Public domain W3C validator