MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-topon Structured version   Visualization version   GIF version

Definition df-topon 20470
Description: Define the set of topologies with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
df-topon TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
Distinct variable group:   𝑗,𝑏

Detailed syntax breakdown of Definition df-topon
StepHypRef Expression
1 ctopon 20465 . 2 class TopOn
2 vb . . 3 setvar 𝑏
3 cvv 3172 . . 3 class V
42cv 1473 . . . . 5 class 𝑏
5 vj . . . . . . 7 setvar 𝑗
65cv 1473 . . . . . 6 class 𝑗
76cuni 4366 . . . . 5 class 𝑗
84, 7wceq 1474 . . . 4 wff 𝑏 = 𝑗
9 ctop 20464 . . . 4 class Top
108, 5, 9crab 2899 . . 3 class {𝑗 ∈ Top ∣ 𝑏 = 𝑗}
112, 3, 10cmpt 4637 . 2 class (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
121, 11wceq 1474 1 wff TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
Colors of variables: wff setvar class
This definition is referenced by:  istopon  20487  bj-funtopon  32019  bj-toponss  32024  bj-dmtopon  32025
  Copyright terms: Public domain W3C validator