Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dral1 Structured version   Visualization version   GIF version

Theorem dral1 2356
 Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.) Remove dependency on ax-11 2074. (Revised by Wolf Lammen, 6-Sep-2018.)
Hypothesis
Ref Expression
dral1.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dral1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))

Proof of Theorem dral1
StepHypRef Expression
1 nfa1 2068 . . 3 𝑥𝑥 𝑥 = 𝑦
2 dral1.1 . . 3 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
31, 2albid 2128 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
4 axc11 2347 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 → ∀𝑦𝜓))
5 axc11r 2223 . . 3 (∀𝑥 𝑥 = 𝑦 → (∀𝑦𝜓 → ∀𝑥𝜓))
64, 5impbid 202 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜓))
73, 6bitrd 268 1 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1745  df-nf 1750 This theorem is referenced by:  drex1  2358  drnf1  2360  ax12OLD  2372  axc16gALT  2395  sb9  2454  ralcom2  3133  axpownd  9461  wl-dral1d  33448  wl-ax11-lem5  33496  wl-ax11-lem8  33499  wl-ax11-lem9  33500
 Copyright terms: Public domain W3C validator