Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dveel2ALT Structured version   Visualization version   GIF version

Theorem dveel2ALT 33038
Description: Alternate proof of dveel2 2358 using ax-c16 32991 instead of ax-5 1826. (Contributed by NM, 10-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dveel2ALT (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveel2ALT
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax5el 33036 . 2 (𝑧𝑤 → ∀𝑥 𝑧𝑤)
2 ax5el 33036 . 2 (𝑧𝑦 → ∀𝑤 𝑧𝑦)
3 elequ2 1990 . 2 (𝑤 = 𝑦 → (𝑧𝑤𝑧𝑦))
41, 2, 3dvelimh 2323 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧𝑦 → ∀𝑥 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-c14 32990  ax-c16 32991
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator