Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exlimexi Structured version   Visualization version   GIF version

Theorem exlimexi 39047
Description: Inference similar to Theorem 19.23 of [Margaris] p. 90. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
exlimexi.1 (𝜓 → ∀𝑥𝜓)
exlimexi.2 (∃𝑥𝜑 → (𝜑𝜓))
Assertion
Ref Expression
exlimexi (∃𝑥𝜑𝜓)

Proof of Theorem exlimexi
StepHypRef Expression
1 hbe1 2061 . . 3 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
2 exlimexi.1 . . 3 (𝜓 → ∀𝑥𝜓)
3 exlimexi.2 . . 3 (∃𝑥𝜑 → (𝜑𝜓))
41, 2, 3exlimdh 2187 . 2 (∃𝑥𝜑 → (∃𝑥𝜑𝜓))
54pm2.43i 52 1 (∃𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1521  wex 1744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087
This theorem depends on definitions:  df-bi 197  df-ex 1745  df-nf 1750
This theorem is referenced by:  sb5ALT  39048  exinst  39166
  Copyright terms: Public domain W3C validator