MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truimtru Structured version   Visualization version   GIF version

Theorem truimtru 1554
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truimtru ((⊤ → ⊤) ↔ ⊤)

Proof of Theorem truimtru
StepHypRef Expression
1 id 22 . 2 (⊤ → ⊤)
21bitru 1536 1 ((⊤ → ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wtru 1524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-tru 1526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator