MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitru Structured version   Visualization version   GIF version

Theorem bitru 1493
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1 𝜑
Assertion
Ref Expression
bitru (𝜑 ↔ ⊤)

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2 𝜑
2 tru 1484 . 2
31, 22th 254 1 (𝜑 ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wtru 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-tru 1483
This theorem is referenced by:  truorfal  1508  falortru  1509  truimtru  1511  falimtru  1513  falimfal  1514  notfal  1516  trubitru  1517  falbifal  1520  0frgp  18113  tgcgr4  25326  astbstanbst  40380  atnaiana  40394  dandysum2p2e4  40469
  Copyright terms: Public domain W3C validator