![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > ax-tdef | Unicode version |
Description: The type definition
axiom. The last hypothesis corresponds to the
actual definition one wants to make; here we are defining a new type
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ax-tdef.1 |
![]() ![]() ![]() ![]() |
ax-tdef.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ax-tdef.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ax-tdef.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ax-tdef |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kt 8 |
. 2
term ![]() | |
2 | tal 122 |
. . . 4
term ![]() | |
3 | hbe |
. . . . 5
type ![]() | |
4 | vx |
. . . . 5
var ![]() | |
5 | ta |
. . . . . . 7
term ![]() | |
6 | tr |
. . . . . . . 8
term ![]() | |
7 | 3, 4 | tv 1 |
. . . . . . . 8
term ![]() ![]() ![]() |
8 | 6, 7 | kc 5 |
. . . . . . 7
term ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 5, 8 | kc 5 |
. . . . . 6
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | ke 7 |
. . . . . 6
term ![]() | |
11 | 9, 7, 10 | kbr 9 |
. . . . 5
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 3, 4, 11 | kl 6 |
. . . 4
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 2, 12 | kc 5 |
. . 3
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | hal |
. . . . 5
type ![]() | |
15 | tf |
. . . . . . 7
term ![]() | |
16 | 14, 4 | tv 1 |
. . . . . . 7
term ![]() ![]() ![]() |
17 | 15, 16 | kc 5 |
. . . . . 6
term ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 5, 16 | kc 5 |
. . . . . . . 8
term ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 6, 18 | kc 5 |
. . . . . . 7
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 19, 16, 10 | kbr 9 |
. . . . . 6
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 17, 20, 10 | kbr 9 |
. . . . 5
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 14, 4, 21 | kl 6 |
. . . 4
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 2, 22 | kc 5 |
. . 3
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 13, 23 | kct 10 |
. 2
term ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 1, 24 | wffMMJ2 11 |
1
wff ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: type var term |
This axiom is referenced by: (None) |
Copyright terms: Public domain | W3C validator |