Detailed syntax breakdown of Axiom ax-tdef
| Step | Hyp | Ref
| Expression |
| 1 | | kt 8 |
. 2
term ⊤ |
| 2 | | tal 122 |
. . . 4
term ∀ |
| 3 | | hbe |
. . . . 5
type β |
| 4 | | vx |
. . . . 5
var x |
| 5 | | ta |
. . . . . . 7
term A |
| 6 | | tr |
. . . . . . . 8
term R |
| 7 | 3, 4 | tv 1 |
. . . . . . . 8
term x:β |
| 8 | 6, 7 | kc 5 |
. . . . . . 7
term (Rx:β) |
| 9 | 5, 8 | kc 5 |
. . . . . 6
term (A(Rx:β)) |
| 10 | | ke 7 |
. . . . . 6
term = |
| 11 | 9, 7, 10 | kbr 9 |
. . . . 5
term [(A(Rx:β)) =
x:β] |
| 12 | 3, 4, 11 | kl 6 |
. . . 4
term λx:β
[(A(Rx:β)) = x:β] |
| 13 | 2, 12 | kc 5 |
. . 3
term (∀λx:β
[(A(Rx:β)) = x:β]) |
| 14 | | hal |
. . . . 5
type α |
| 15 | | tf |
. . . . . . 7
term F |
| 16 | 14, 4 | tv 1 |
. . . . . . 7
term x:α |
| 17 | 15, 16 | kc 5 |
. . . . . 6
term (Fx:α) |
| 18 | 5, 16 | kc 5 |
. . . . . . . 8
term (Ax:α) |
| 19 | 6, 18 | kc 5 |
. . . . . . 7
term (R(Ax:α)) |
| 20 | 19, 16, 10 | kbr 9 |
. . . . . 6
term [(R(Ax:α)) =
x:α] |
| 21 | 17, 20, 10 | kbr 9 |
. . . . 5
term [(Fx:α) = [(R(Ax:α)) =
x:α]] |
| 22 | 14, 4, 21 | kl 6 |
. . . 4
term λx:α
[(Fx:α) =
[(R(Ax:α)) = x:α]] |
| 23 | 2, 22 | kc 5 |
. . 3
term (∀λx:α
[(Fx:α) =
[(R(Ax:α)) = x:α]]) |
| 24 | 13, 23 | kct 10 |
. 2
term ((∀λx:β
[(A(Rx:β)) = x:β]),
(∀λx:α
[(Fx:α) =
[(R(Ax:α)) = x:α]])) |
| 25 | 1, 24 | wffMMJ2 11 |
1
wff ⊤⊧((∀λx:β
[(A(Rx:β)) = x:β]),
(∀λx:α
[(Fx:α) =
[(R(Ax:α)) = x:α]])) |