| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > eqcomx | Unicode version | ||
| Description: Commutativity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.) |
| Ref | Expression |
|---|---|
| eqcomx.1 |
|
| eqcomx.2 |
|
| eqcomx.3 |
|
| Ref | Expression |
|---|---|
| eqcomx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcomx.3 |
. . . 4
| |
| 2 | 1 | ax-cb1 29 |
. . 3
|
| 3 | eqcomx.1 |
. . . 4
| |
| 4 | 3 | ax-refl 42 |
. . 3
|
| 5 | 2, 4 | a1i 28 |
. 2
|
| 6 | weq 41 |
. . . . . 6
| |
| 7 | 6 | ax-refl 42 |
. . . . 5
|
| 8 | 2, 7 | a1i 28 |
. . . 4
|
| 9 | eqcomx.2 |
. . . . 5
| |
| 10 | 6, 6, 3, 9 | ax-ceq 51 |
. . . 4
|
| 11 | 8, 1, 10 | syl2anc 19 |
. . 3
|
| 12 | 6, 3 | wc 50 |
. . . 4
|
| 13 | 6, 9 | wc 50 |
. . . 4
|
| 14 | 12, 13, 3, 3 | ax-ceq 51 |
. . 3
|
| 15 | 11, 5, 14 | syl2anc 19 |
. 2
|
| 16 | 5, 15 | ax-eqmp 45 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 |
| This theorem is referenced by: mpbirx 53 eqcomi 79 |
| Copyright terms: Public domain | W3C validator |