HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  eqcomx Unicode version

Theorem eqcomx 52
Description: Commutativity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.)
Hypotheses
Ref Expression
eqcomx.1 |- A:al
eqcomx.2 |- B:al
eqcomx.3 |- R |= (( = A)B)
Assertion
Ref Expression
eqcomx |- R |= (( = B)A)

Proof of Theorem eqcomx
StepHypRef Expression
1 eqcomx.3 . . . 4 |- R |= (( = A)B)
21ax-cb1 29 . . 3 |- R:*
3 eqcomx.1 . . . 4 |- A:al
43ax-refl 42 . . 3 |- T. |= (( = A)A)
52, 4a1i 28 . 2 |- R |= (( = A)A)
6 weq 41 . . . . . 6 |- = :(al -> (al -> *))
76ax-refl 42 . . . . 5 |- T. |= (( = = ) = )
82, 7a1i 28 . . . 4 |- R |= (( = = ) = )
9 eqcomx.2 . . . . 5 |- B:al
106, 6, 3, 9ax-ceq 51 . . . 4 |- ((( = = ) = ), (( = A)B)) |= (( = ( = A))( = B))
118, 1, 10syl2anc 19 . . 3 |- R |= (( = ( = A))( = B))
126, 3wc 50 . . . 4 |- ( = A):(al -> *)
136, 9wc 50 . . . 4 |- ( = B):(al -> *)
1412, 13, 3, 3ax-ceq 51 . . 3 |- ((( = ( = A))( = B)), (( = A)A)) |= (( = (( = A)A))(( = B)A))
1511, 5, 14syl2anc 19 . 2 |- R |= (( = (( = A)A))(( = B)A))
165, 15ax-eqmp 45 1 |- R |= (( = B)A)
Colors of variables: type var term
Syntax hints:   -> ht 2  *hb 3  kc 5   = ke 7   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51
This theorem is referenced by:  mpbirx  53  eqcomi  79
  Copyright terms: Public domain W3C validator