Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > eqcomx | Unicode version |
Description: Commutativity of equality. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
eqcomx.1 | |
eqcomx.2 | |
eqcomx.3 |
Ref | Expression |
---|---|
eqcomx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcomx.3 | . . . 4 | |
2 | 1 | ax-cb1 29 | . . 3 |
3 | eqcomx.1 | . . . 4 | |
4 | 3 | ax-refl 42 | . . 3 |
5 | 2, 4 | a1i 28 | . 2 |
6 | weq 41 | . . . . . 6 | |
7 | 6 | ax-refl 42 | . . . . 5 |
8 | 2, 7 | a1i 28 | . . . 4 |
9 | eqcomx.2 | . . . . 5 | |
10 | 6, 6, 3, 9 | ax-ceq 51 | . . . 4 |
11 | 8, 1, 10 | syl2anc 19 | . . 3 |
12 | 6, 3 | wc 50 | . . . 4 |
13 | 6, 9 | wc 50 | . . . 4 |
14 | 12, 13, 3, 3 | ax-ceq 51 | . . 3 |
15 | 11, 5, 14 | syl2anc 19 | . 2 |
16 | 5, 15 | ax-eqmp 45 | 1 |
Colors of variables: type var term |
Syntax hints: ht 2 hb 3 kc 5 ke 7 wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 |
This theorem is referenced by: mpbirx 53 eqcomi 79 |
Copyright terms: Public domain | W3C validator |