Proof of Theorem eqcomx
Step | Hyp | Ref
| Expression |
1 | | eqcomx.3 |
. . . 4
⊢ R⊧(( = A)B) |
2 | 1 | ax-cb1 29 |
. . 3
⊢ R:∗ |
3 | | eqcomx.1 |
. . . 4
⊢ A:α |
4 | 3 | ax-refl 42 |
. . 3
⊢ ⊤⊧(( =
A)A) |
5 | 2, 4 | a1i 28 |
. 2
⊢ R⊧(( = A)A) |
6 | | weq 41 |
. . . . . 6
⊢ = :(α → (α → ∗)) |
7 | 6 | ax-refl 42 |
. . . . 5
⊢ ⊤⊧(( =
= ) = ) |
8 | 2, 7 | a1i 28 |
. . . 4
⊢ R⊧(( = = ) = ) |
9 | | eqcomx.2 |
. . . . 5
⊢ B:α |
10 | 6, 6, 3, 9 | ax-ceq 51 |
. . . 4
⊢ ((( = = ) = ), (( =
A)B))⊧(( = ( = A))( = B)) |
11 | 8, 1, 10 | syl2anc 19 |
. . 3
⊢ R⊧(( = ( = A))( = B)) |
12 | 6, 3 | wc 50 |
. . . 4
⊢ ( = A):(α
→ ∗) |
13 | 6, 9 | wc 50 |
. . . 4
⊢ ( = B):(α
→ ∗) |
14 | 12, 13, 3, 3 | ax-ceq 51 |
. . 3
⊢ ((( = ( = A))( = B)), (( =
A)A))⊧(( = (( = A)A))(( =
B)A)) |
15 | 11, 5, 14 | syl2anc 19 |
. 2
⊢ R⊧(( = (( = A)A))(( =
B)A)) |
16 | 5, 15 | ax-eqmp 45 |
1
⊢ R⊧(( = B)A) |