Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > mpbirx | Unicode version |
Description: Deduction from equality inference. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
mpbirx.1 | |
mpbirx.2 | |
mpbirx.3 |
Ref | Expression |
---|---|
mpbirx |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbirx.2 | . 2 | |
2 | mpbirx.1 | . . 3 | |
3 | 1 | ax-cb2 30 | . . 3 |
4 | mpbirx.3 | . . 3 | |
5 | 2, 3, 4 | eqcomx 52 | . 2 |
6 | 1, 5 | ax-eqmp 45 | 1 |
Colors of variables: type var term |
Syntax hints: hb 3 kc 5 ke 7 wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 |
This theorem is referenced by: dfov2 75 |
Copyright terms: Public domain | W3C validator |