| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > mpbirx | GIF version | ||
| Description: Deduction from equality inference. (Contributed by Mario Carneiro, 7-Oct-2014.) |
| Ref | Expression |
|---|---|
| mpbirx.1 | ⊢ B:∗ |
| mpbirx.2 | ⊢ R⊧A |
| mpbirx.3 | ⊢ R⊧(( = B)A) |
| Ref | Expression |
|---|---|
| mpbirx | ⊢ R⊧B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbirx.2 | . 2 ⊢ R⊧A | |
| 2 | mpbirx.1 | . . 3 ⊢ B:∗ | |
| 3 | 1 | ax-cb2 30 | . . 3 ⊢ A:∗ |
| 4 | mpbirx.3 | . . 3 ⊢ R⊧(( = B)A) | |
| 5 | 2, 3, 4 | eqcomx 52 | . 2 ⊢ R⊧(( = A)B) |
| 6 | 1, 5 | ax-eqmp 45 | 1 ⊢ R⊧B |
| Colors of variables: type var term |
| Syntax hints: ∗hb 3 kc 5 = ke 7 ⊧wffMMJ2 11 wffMMJ2t 12 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 |
| This theorem is referenced by: dfov2 75 |
| Copyright terms: Public domain | W3C validator |