Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > mpbirx | GIF version |
Description: Deduction from equality inference. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
mpbirx.1 | ⊢ B:∗ |
mpbirx.2 | ⊢ R⊧A |
mpbirx.3 | ⊢ R⊧(( = B)A) |
Ref | Expression |
---|---|
mpbirx | ⊢ R⊧B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbirx.2 | . 2 ⊢ R⊧A | |
2 | mpbirx.1 | . . 3 ⊢ B:∗ | |
3 | 1 | ax-cb2 30 | . . 3 ⊢ A:∗ |
4 | mpbirx.3 | . . 3 ⊢ R⊧(( = B)A) | |
5 | 2, 3, 4 | eqcomx 52 | . 2 ⊢ R⊧(( = A)B) |
6 | 1, 5 | ax-eqmp 45 | 1 ⊢ R⊧B |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kc 5 = ke 7 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 |
This theorem is referenced by: dfov2 75 |
Copyright terms: Public domain | W3C validator |