![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > dfov2 | Unicode version |
Description: Reverse direction of df-ov 65. |
Ref | Expression |
---|---|
dfov1.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
dfov1.2 |
![]() ![]() ![]() ![]() |
dfov1.3 |
![]() ![]() ![]() ![]() |
dfov2.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
dfov2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfov1.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dfov1.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | dfov1.3 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | wov 64 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | dfov2.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | ax-cb1 29 |
. . 3
![]() ![]() ![]() ![]() |
7 | 1, 2, 3 | df-ov 65 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 6, 7 | a1i 28 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 4, 5, 8 | mpbirx 48 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: type var term |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
This theorem depends on definitions: df-ov 65 |
This theorem is referenced by: eqcomi 70 eqid 73 ded 74 ceq12 78 leq 81 beta 82 distrc 83 distrl 84 eqtri 85 oveq123 88 hbov 101 ovl 107 |
Copyright terms: Public domain | W3C validator |