Detailed syntax breakdown of Axiom ax-eta
| Step | Hyp | Ref
| Expression |
| 1 | | kt 8 |
. 2
term ⊤ |
| 2 | | tal 122 |
. . 3
term ∀ |
| 3 | | hal |
. . . . 5
type α |
| 4 | | hbe |
. . . . 5
type β |
| 5 | 3, 4 | ht 2 |
. . . 4
type (α → β) |
| 6 | | vf |
. . . 4
var f |
| 7 | | vx |
. . . . . 6
var x |
| 8 | 5, 6 | tv 1 |
. . . . . . 7
term f:(α
→ β) |
| 9 | 3, 7 | tv 1 |
. . . . . . 7
term x:α |
| 10 | 8, 9 | kc 5 |
. . . . . 6
term (f:(α
→ β)x:α) |
| 11 | 3, 7, 10 | kl 6 |
. . . . 5
term λx:α
(f:(α → β)x:α) |
| 12 | | ke 7 |
. . . . 5
term = |
| 13 | 11, 8, 12 | kbr 9 |
. . . 4
term [λx:α
(f:(α → β)x:α) =
f:(α → β)] |
| 14 | 5, 6, 13 | kl 6 |
. . 3
term λf:(α
→ β) [λx:α
(f:(α → β)x:α) =
f:(α → β)] |
| 15 | 2, 14 | kc 5 |
. 2
term (∀λf:(α
→ β) [λx:α
(f:(α → β)x:α) =
f:(α → β)]) |
| 16 | 1, 15 | wffMMJ2 11 |
1
wff ⊤⊧(∀λf:(α
→ β) [λx:α
(f:(α → β)x:α) =
f:(α → β)]) |