Detailed syntax breakdown of Axiom ax-inf
| Step | Hyp | Ref
| Expression |
| 1 | | kt 8 |
. 2
term ⊤ |
| 2 | | tex 123 |
. . 3
term ∃ |
| 3 | | hi 4 |
. . . . 5
type ι |
| 4 | 3, 3 | ht 2 |
. . . 4
type (ι →
ι) |
| 5 | | vf |
. . . 4
var f |
| 6 | | tf11 189 |
. . . . . 6
term 1-1 |
| 7 | 4, 5 | tv 1 |
. . . . . 6
term f:(ι → ι) |
| 8 | 6, 7 | kc 5 |
. . . . 5
term (1-1 f:(ι → ι)) |
| 9 | | tne 120 |
. . . . . 6
term ¬ |
| 10 | | tfo 190 |
. . . . . . 7
term onto |
| 11 | 10, 7 | kc 5 |
. . . . . 6
term (onto f:(ι → ι)) |
| 12 | 9, 11 | kc 5 |
. . . . 5
term (¬ (onto f:(ι → ι))) |
| 13 | | tan 119 |
. . . . 5
term ∧ |
| 14 | 8, 12, 13 | kbr 9 |
. . . 4
term [(1-1 f:(ι → ι)) ∧ (¬ (onto
f:(ι →
ι)))] |
| 15 | 4, 5, 14 | kl 6 |
. . 3
term λf:(ι → ι) [(1-1 f:(ι → ι)) ∧ (¬ (onto f:(ι → ι)))] |
| 16 | 2, 15 | kc 5 |
. 2
term (∃λf:(ι → ι) [(1-1 f:(ι → ι)) ∧ (¬ (onto f:(ι → ι)))]) |
| 17 | 1, 16 | wffMMJ2 11 |
1
wff ⊤⊧(∃λf:(ι → ι) [(1-1 f:(ι → ι)) ∧ (¬ (onto f:(ι → ι)))]) |