Theorem List for Higher-Order Logic Explorer - 201-222 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | exnal 201* |
Theorem 19.14 of [Margaris] p. 90.
(Contributed by Mario Carneiro,
10-Oct-2014.)
|
⊢ A:∗ ⇒ ⊢ ⊤⊧[(∃λx:α
(¬ A)) = (¬ (∀λx:α
A))] |
|
Axiom | ax-inf 202 |
The axiom of infinity: the set of "individuals" is not
Dedekind-finite.
Using the axiom of choice, we can show that this is equivalent to an
embedding of the natural numbers in ι. (Contributed by Mario
Carneiro, 10-Oct-2014.)
|
⊢ ⊤⊧(∃λf:(ι → ι) [(1-1 f:(ι → ι)) ∧ (¬ (onto f:(ι → ι)))]) |
|
0.6 Rederive the Metamath
axioms
|
|
Theorem | ax1 203 |
Axiom Simp. Axiom A1 of [Margaris] p.
49. (Contributed by Mario
Carneiro, 9-Oct-2014.)
|
⊢ R:∗
& ⊢ S:∗ ⇒ ⊢ ⊤⊧[R ⇒ [S
⇒ R]] |
|
Theorem | ax2 204 |
Axiom Frege. Axiom A2 of [Margaris]
p. 49. (Contributed by Mario
Carneiro, 9-Oct-2014.)
|
⊢ R:∗
& ⊢ S:∗
& ⊢ T:∗ ⇒ ⊢ ⊤⊧[[R ⇒ [S
⇒ T]] ⇒ [[R ⇒ S]
⇒ [R ⇒ T]]] |
|
Theorem | ax3 205 |
Axiom Transp. Axiom A3 of [Margaris]
p. 49. (Contributed by Mario
Carneiro, 10-Oct-2014.)
|
⊢ R:∗
& ⊢ S:∗ ⇒ ⊢ ⊤⊧[[(¬ R) ⇒ (¬ S)] ⇒ [S
⇒ R]] |
|
Theorem | axmp 206 |
Rule of Modus Ponens. The postulated inference rule of propositional
calculus. See e.g. Rule 1 of [Hamilton] p. 73. (Contributed by Mario
Carneiro, 10-Oct-2014.)
|
⊢ S:∗
& ⊢ ⊤⊧R
& ⊢ ⊤⊧[R ⇒ S] ⇒ ⊢ ⊤⊧S |
|
Theorem | ax5 207* |
Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105.
(Contributed by Mario Carneiro, 10-Oct-2014.)
|
⊢ R:∗
& ⊢ S:∗ ⇒ ⊢ ⊤⊧[(∀λx:α
[R ⇒ S]) ⇒ [(∀λx:α
R) ⇒ (∀λx:α
S)]] |
|
Theorem | ax6 208* |
Axiom of Quantified Negation. Axiom C5-2 of [Monk2] p. 113.
(Contributed by Mario Carneiro, 10-Oct-2014.)
|
⊢ R:∗ ⇒ ⊢ ⊤⊧[(¬ (∀λx:α
R)) ⇒ (∀λx:α
(¬ (∀λx:α
R)))] |
|
Theorem | ax7 209* |
Axiom of Quantifier Commutation. Axiom scheme C6' in [Megill] p. 448
(p. 16 of the preprint). (Contributed by Mario Carneiro,
10-Oct-2014.)
|
⊢ R:∗ ⇒ ⊢ ⊤⊧[(∀λx:α
(∀λy:α
R)) ⇒ (∀λy:α
(∀λx:α
R))] |
|
Theorem | axgen 210* |
Rule of Generalization. See e.g. Rule 2 of [Hamilton] p. 74.
(Contributed by Mario Carneiro, 10-Oct-2014.)
|
⊢ ⊤⊧R ⇒ ⊢ ⊤⊧(∀λx:α
R) |
|
Theorem | ax8 211 |
Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the
preprint). Also appears as Axiom C7 of [Monk2] p. 105. (Contributed by
Mario Carneiro, 10-Oct-2014.)
|
⊢ A:α
& ⊢ B:α
& ⊢ C:α ⇒ ⊢ ⊤⊧[[A = B] ⇒
[[A = C] ⇒ [B =
C]]] |
|
Theorem | ax9 212* |
Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the
preprint). Also appears as Axiom C7 of [Monk2] p. 105. (Contributed by
Mario Carneiro, 10-Oct-2014.)
|
⊢ A:α ⇒ ⊢ ⊤⊧(¬ (∀λx:α
(¬ [x:α = A]))) |
|
Theorem | ax10 213* |
Axiom of Quantifier Substitution. Appears as Lemma L12 in [Megill]
p. 445 (p. 12 of the preprint). (Contributed by Mario Carneiro,
10-Oct-2014.)
|
⊢ ⊤⊧[(∀λx:α
[x:α = y:α])
⇒ (∀λy:α
[y:α = x:α])] |
|
Theorem | ax11 214* |
Axiom of Variable Substitution. It is based on Lemma 16 of [Tarski]
p. 70 and Axiom C8 of [Monk2] p. 105,
from which it can be proved by
cases. (Contributed by Mario Carneiro, 10-Oct-2014.)
|
⊢ A:∗ ⇒ ⊢ ⊤⊧[[x:α =
y:α] ⇒ [(∀λy:α
A) ⇒ (∀λx:α
[[x:α = y:α]
⇒ A])]] |
|
Theorem | ax12 215* |
Axiom of Quantifier Introduction. Axiom scheme C9' in [Megill] p. 448
(p. 16 of the preprint). (Contributed by Mario Carneiro,
10-Oct-2014.)
|
⊢ ⊤⊧[(¬ (∀λz:α
[z:α = x:α]))
⇒ [(¬ (∀λz:α
[z:α = y:α]))
⇒ [[x:α = y:α]
⇒ (∀λz:α
[x:α = y:α])]]] |
|
Theorem | ax13 216 |
Axiom of Equality. Axiom scheme C12' in [Megill] p. 448 (p. 16 of the
preprint). It is a special case of Axiom B8 (p. 75) of system S2 of
[Tarski] p. 77. (Contributed by Mario
Carneiro, 10-Oct-2014.)
|
⊢ A:α
& ⊢ B:α
& ⊢ C:(α →
∗) ⇒ ⊢ ⊤⊧[[A = B] ⇒
[(CA)
⇒ (CB)]] |
|
Theorem | ax14 217 |
Axiom of Equality. Axiom scheme C12' in [Megill] p. 448 (p. 16 of the
preprint). It is a special case of Axiom B8 (p. 75) of system S2 of
[Tarski] p. 77. (Contributed by Mario
Carneiro, 10-Oct-2014.)
|
⊢ A:(α → ∗) & ⊢ B:(α → ∗) & ⊢ C:α ⇒ ⊢ ⊤⊧[[A = B] ⇒
[(AC)
⇒ (BC)]] |
|
Theorem | ax17m 218* |
Axiom to quantify a variable over a formula in which it does not occur.
Axiom C5 in [Megill] p. 444 (p. 11 of
the preprint). Also appears as
Axiom B6 (p. 75) of system S2 of [Tarski] p. 77 and Axiom C5-1 of
[Monk2] p. 113. (Contributed by Mario
Carneiro, 10-Oct-2014.)
|
⊢ A:∗ ⇒ ⊢ ⊤⊧[A ⇒ (∀λx:α
A)] |
|
Theorem | axext 219* |
Axiom of Extensionality. An axiom of Zermelo-Fraenkel set theory. It
states that two sets are identical if they contain the same elements.
Axiom Ext of [BellMachover] p.
461. (Contributed by Mario Carneiro,
10-Oct-2014.)
|
⊢ A:(α → ∗) & ⊢ B:(α →
∗) ⇒ ⊢ ⊤⊧[(∀λx:α
[(Ax:α) =
(Bx:α)])
⇒ [A = B]] |
|
Theorem | axrep 220* |
Axiom of Replacement. An axiom scheme of Zermelo-Fraenkel set theory.
Axiom 5 of [TakeutiZaring] p. 19.
(Contributed by Mario Carneiro,
10-Oct-2014.)
|
⊢ A:∗
& ⊢ B:(α →
∗) ⇒ ⊢ ⊤⊧[(∀λx:α
(∃λy:β (∀λz:β
[(∀λy:β
A) ⇒ [z:β =
y:β]]))) ⇒ (∃λy:(β
→ ∗) (∀λz:β
[(y:(β → ∗)z:β) =
(∃λx:α
[(Bx:α)
∧ (∀λy:β
A)])]))] |
|
Theorem | axpow 221* |
Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory.
(Contributed by Mario Carneiro, 10-Oct-2014.)
|
⊢ A:(α →
∗) ⇒ ⊢ ⊤⊧(∃λy:((α
→ ∗) → ∗) (∀λz:(α
→ ∗) [(∀λx:α
[(z:(α → ∗)x:α)
⇒ (Ax:α)])
⇒ (y:((α → ∗) →
∗)z:(α → ∗))])) |
|
Theorem | axun 222* |
Axiom of Union. An axiom of Zermelo-Fraenkel set theory. (Contributed
by Mario Carneiro, 10-Oct-2014.)
|
⊢ A:((α → ∗) →
∗) ⇒ ⊢ ⊤⊧(∃λy:(α
→ ∗) (∀λz:α
[(∃λx:(α
→ ∗) [(x:(α → ∗)z:α)
∧ (Ax:(α → ∗))]) ⇒ (y:(α
→ ∗)z:α)])) |