Proof of Theorem exnal
| Step | Hyp | Ref
| Expression |
| 1 | | wnot 138 |
. . 3
⊢ ¬ :(∗
→ ∗) |
| 2 | | wex 139 |
. . . . 5
⊢ ∃:((α
→ ∗) → ∗) |
| 3 | | exmid.1 |
. . . . . . 7
⊢ A:∗ |
| 4 | 1, 3 | wc 50 |
. . . . . 6
⊢ (¬ A):∗ |
| 5 | 4 | wl 66 |
. . . . 5
⊢
λx:α (¬ A):(α
→ ∗) |
| 6 | 2, 5 | wc 50 |
. . . 4
⊢ (∃λx:α (¬
A)):∗ |
| 7 | 1, 6 | wc 50 |
. . 3
⊢ (¬ (∃λx:α (¬
A))):∗ |
| 8 | 1, 7 | wc 50 |
. 2
⊢ (¬ (¬
(∃λx:α (¬
A)))):∗ |
| 9 | | wal 134 |
. . . . 5
⊢ ∀:((α
→ ∗) → ∗) |
| 10 | 1, 4 | wc 50 |
. . . . . 6
⊢ (¬ (¬
A)):∗ |
| 11 | 10 | wl 66 |
. . . . 5
⊢
λx:α (¬ (¬ A)):(α
→ ∗) |
| 12 | 9, 11 | wc 50 |
. . . 4
⊢ (∀λx:α (¬
(¬ A))):∗ |
| 13 | 4 | alnex 186 |
. . . 4
⊢
⊤⊧[(∀λx:α (¬
(¬ A))) = (¬ (∃λx:α (¬
A)))] |
| 14 | 12, 13 | eqcomi 79 |
. . 3
⊢
⊤⊧[(¬ (∃λx:α (¬
A))) = (∀λx:α (¬
(¬ A)))] |
| 15 | 1, 7, 14 | ceq2 90 |
. 2
⊢
⊤⊧[(¬ (¬ (∃λx:α (¬
A)))) = (¬ (∀λx:α (¬
(¬ A))))] |
| 16 | 6 | notnot 200 |
. 2
⊢
⊤⊧[(∃λx:α (¬
A)) = (¬ (¬ (∃λx:α (¬
A))))] |
| 17 | 3 | wl 66 |
. . . 4
⊢
λx:α A:(α
→ ∗) |
| 18 | 9, 17 | wc 50 |
. . 3
⊢ (∀λx:α
A):∗ |
| 19 | 3 | notnot 200 |
. . . . 5
⊢
⊤⊧[A = (¬ (¬
A))] |
| 20 | 3, 19 | leq 91 |
. . . 4
⊢
⊤⊧[λx:α
A = λx:α (¬
(¬ A))] |
| 21 | 9, 17, 20 | ceq2 90 |
. . 3
⊢
⊤⊧[(∀λx:α
A) = (∀λx:α (¬
(¬ A)))] |
| 22 | 1, 18, 21 | ceq2 90 |
. 2
⊢
⊤⊧[(¬ (∀λx:α
A)) = (¬ (∀λx:α (¬
(¬ A))))] |
| 23 | 8, 15, 16, 22 | 3eqtr4i 96 |
1
⊢
⊤⊧[(∃λx:α (¬
A)) = (¬ (∀λx:α
A))] |