HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ax-weq GIF version

Axiom ax-weq 40
Description: The equality function has type αα → ∗, i.e. it is polymorphic over all types, but the left and right type must agree. (New usage is discouraged.) (Contributed by Mario Carneiro, 7-Oct-2014.)
Assertion
Ref Expression
ax-weq = :(α → (α → ∗))

Detailed syntax breakdown of Axiom ax-weq
StepHypRef Expression
1 hal . . 3 type α
2 hb 3 . . . 4 type
31, 2ht 2 . . 3 type (α → ∗)
41, 3ht 2 . 2 type (α → (α → ∗))
5 ke 7 . 2 term =
64, 5wffMMJ2t 12 1 wff = :(α → (α → ∗))
Colors of variables: type var term
This axiom is referenced by:  weq  41
  Copyright terms: Public domain W3C validator