Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > trul | GIF version |
Description: Deduction form of tru 44. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
trul.1 | ⊢ (⊤, R)⊧S |
Ref | Expression |
---|---|
trul | ⊢ R⊧S |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trul.1 | . . . . 5 ⊢ (⊤, R)⊧S | |
2 | 1 | ax-cb1 29 | . . . 4 ⊢ (⊤, R):∗ |
3 | 2 | wctr 34 | . . 3 ⊢ R:∗ |
4 | 3 | trud 27 | . 2 ⊢ R⊧⊤ |
5 | 3 | id 25 | . 2 ⊢ R⊧R |
6 | 4, 5, 1 | syl2anc 19 | 1 ⊢ R⊧S |
Colors of variables: type var term |
Syntax hints: ⊤kt 8 kct 10 ⊧wffMMJ2 11 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-id 24 ax-trud 26 ax-cb1 29 ax-wctr 32 |
This theorem is referenced by: alnex 186 exnal1 187 |
Copyright terms: Public domain | W3C validator |