![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > weq | GIF version |
Description: The equality function has type α → α → ∗, i.e. it is polymorphic over all types, but the left and right type must agree. |
Ref | Expression |
---|---|
weq | ⊢ = :(α → (α → ∗)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hal | . . 3 type α | |
2 | hb 3 | . . . 4 type ∗ | |
3 | 1, 2 | ht 2 | . . 3 type (α → ∗) |
4 | 1, 3 | ht 2 | . 2 type (α → (α → ∗)) |
5 | ke 7 | . 2 term = | |
6 | 4, 5 | wffMMJ2t 12 | 1 wff = :(α → (α → ∗)) |
Colors of variables: type var term |
This definition is referenced by: wtru 40 eqcomx 47 weqi 68 eqcomi 70 mpbi 72 eqid 73 ded 74 ceq12 78 leq 81 beta 82 distrc 83 distrl 84 eqtri 85 oveq123 88 hbov 101 clf 105 ovl 107 alval 132 euval 134 imval 136 anval 138 eta 166 cbvf 167 leqf 169 ax10 200 axrep 207 |
Copyright terms: Public domain | W3C validator |