Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > df-fal | GIF version |
Description: Define the constant false. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
df-fal | ⊢ ⊤⊧[⊥ = (∀λp:∗ p:∗)] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kt 8 | . 2 term ⊤ | |
2 | tfal 118 | . . 3 term ⊥ | |
3 | tal 122 | . . . 4 term ∀ | |
4 | hb 3 | . . . . 5 type ∗ | |
5 | vp | . . . . 5 var p | |
6 | 4, 5 | tv 1 | . . . . 5 term p:∗ |
7 | 4, 5, 6 | kl 6 | . . . 4 term λp:∗ p:∗ |
8 | 3, 7 | kc 5 | . . 3 term (∀λp:∗ p:∗) |
9 | ke 7 | . . 3 term = | |
10 | 2, 8, 9 | kbr 9 | . 2 term [⊥ = (∀λp:∗ p:∗)] |
11 | 1, 10 | wffMMJ2 11 | 1 wff ⊤⊧[⊥ = (∀λp:∗ p:∗)] |
Colors of variables: type var term |
This definition is referenced by: wfal 135 pm2.21 153 |
Copyright terms: Public domain | W3C validator |