| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > df-fal | GIF version | ||
| Description: Define the constant false. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| df-fal | ⊢ ⊤⊧[⊥ = (∀λp:∗ p:∗)] |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kt 8 | . 2 term ⊤ | |
| 2 | tfal 118 | . . 3 term ⊥ | |
| 3 | tal 122 | . . . 4 term ∀ | |
| 4 | hb 3 | . . . . 5 type ∗ | |
| 5 | vp | . . . . 5 var p | |
| 6 | 4, 5 | tv 1 | . . . . 5 term p:∗ |
| 7 | 4, 5, 6 | kl 6 | . . . 4 term λp:∗ p:∗ |
| 8 | 3, 7 | kc 5 | . . 3 term (∀λp:∗ p:∗) |
| 9 | ke 7 | . . 3 term = | |
| 10 | 2, 8, 9 | kbr 9 | . 2 term [⊥ = (∀λp:∗ p:∗)] |
| 11 | 1, 10 | wffMMJ2 11 | 1 wff ⊤⊧[⊥ = (∀λp:∗ p:∗)] |
| Colors of variables: type var term |
| This definition is referenced by: wfal 135 pm2.21 153 |
| Copyright terms: Public domain | W3C validator |