Step | Hyp | Ref
| Expression |
1 | | kt 8 |
. 2
term ⊤ |
2 | | tal 122 |
. . 3
term ∀ |
3 | | hal |
. . . . 5
type α |
4 | | hb 3 |
. . . . 5
type ∗ |
5 | 3, 4 | ht 2 |
. . . 4
type (α → ∗) |
6 | | vp |
. . . 4
var p |
7 | 5, 6 | tv 1 |
. . . . 5
term p:(α
→ ∗) |
8 | | vx |
. . . . . 6
var x |
9 | 3, 8, 1 | kl 6 |
. . . . 5
term λx:α
⊤ |
10 | | ke 7 |
. . . . 5
term = |
11 | 7, 9, 10 | kbr 9 |
. . . 4
term [p:(α
→ ∗) = λx:α ⊤] |
12 | 5, 6, 11 | kl 6 |
. . 3
term λp:(α
→ ∗) [p:(α → ∗) =
λx:α ⊤] |
13 | 2, 12, 10 | kbr 9 |
. 2
term [∀
= λp:(α → ∗) [p:(α
→ ∗) = λx:α ⊤]] |
14 | 1, 13 | wffMMJ2 11 |
1
wff ⊤⊧[∀ = λp:(α
→ ∗) [p:(α → ∗) =
λx:α ⊤]] |