Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > wfal | GIF version |
Description: Contradiction type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
wfal | ⊢ ⊥:∗ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wal 134 | . . 3 ⊢ ∀:((∗ → ∗) → ∗) | |
2 | wv 64 | . . . 4 ⊢ p:∗:∗ | |
3 | 2 | wl 66 | . . 3 ⊢ λp:∗ p:∗:(∗ → ∗) |
4 | 1, 3 | wc 50 | . 2 ⊢ (∀λp:∗ p:∗):∗ |
5 | df-fal 127 | . 2 ⊢ ⊤⊧[⊥ = (∀λp:∗ p:∗)] | |
6 | 4, 5 | eqtypri 81 | 1 ⊢ ⊥:∗ |
Colors of variables: type var term |
Syntax hints: tv 1 → ht 2 ∗hb 3 kc 5 λkl 6 ⊤kt 8 wffMMJ2t 12 ⊥tfal 118 ∀tal 122 |
This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wc 49 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
This theorem depends on definitions: df-al 126 df-fal 127 |
This theorem is referenced by: wnot 138 notval 145 pm2.21 153 notval2 159 notnot1 160 con2d 161 alnex 186 exmid 199 notnot 200 ax3 205 |
Copyright terms: Public domain | W3C validator |