ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccase2 Unicode version

Theorem ccase2 961
Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999.)
Hypotheses
Ref Expression
ccase2.1  |-  ( (
ph  /\  ps )  ->  ta )
ccase2.2  |-  ( ch 
->  ta )
ccase2.3  |-  ( th 
->  ta )
Assertion
Ref Expression
ccase2  |-  ( ( ( ph  \/  ch )  /\  ( ps  \/  th ) )  ->  ta )

Proof of Theorem ccase2
StepHypRef Expression
1 ccase2.1 . 2  |-  ( (
ph  /\  ps )  ->  ta )
2 ccase2.2 . . 3  |-  ( ch 
->  ta )
32adantr 274 . 2  |-  ( ( ch  /\  ps )  ->  ta )
4 ccase2.3 . . 3  |-  ( th 
->  ta )
54adantl 275 . 2  |-  ( (
ph  /\  th )  ->  ta )
64adantl 275 . 2  |-  ( ( ch  /\  th )  ->  ta )
71, 3, 5, 6ccase 959 1  |-  ( ( ( ph  \/  ch )  /\  ( ps  \/  th ) )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator