HomeHome Intuitionistic Logic Explorer
Theorem List (p. 10 of 137)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 901-1000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlooinvdc 901 The Inversion Axiom of the infinite-valued sentential logic (L-infinity) of Lukasiewicz, but where one of the propositions is decidable. Using dfor2dc 881, we can see that this expresses "disjunction commutes." Theorem *2.69 of [WhiteheadRussell] p. 108 (plus the decidability condition). (Contributed by NM, 12-Aug-2004.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  ->  ps )  ->  ps )  ->  ( ( ps  ->  ph )  ->  ph ) ) )
 
1.2.10  Miscellaneous theorems of propositional calculus
 
Theorempm5.21nd 902 Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.)
 |-  ( ( ph  /\  ps )  ->  th )   &    |-  ( ( ph  /\ 
 ch )  ->  th )   &    |-  ( th  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( ps  <->  ch ) )
 
Theorempm5.35 903 Theorem *5.35 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  <->  ch ) ) )
 
Theorempm5.54dc 904 A conjunction is equivalent to one of its conjuncts, given a decidable conjunct. Based on theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  /\  ps )  <->  ph )  \/  ( (
 ph  /\  ps )  <->  ps ) ) )
 
Theorembaib 905 Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ps  ->  ( ph 
 <->  ch ) )
 
Theorembaibr 906 Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ps  ->  ( ch 
 <-> 
 ph ) )
 
Theoremrbaib 907 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ch  ->  ( ph 
 <->  ps ) )
 
Theoremrbaibr 908 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ch  ->  ( ps 
 <-> 
 ph ) )
 
Theorembaibd 909 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  ->  ( ps 
 <->  ( ch  /\  th ) ) )   =>    |-  ( ( ph  /\ 
 ch )  ->  ( ps 
 <-> 
 th ) )
 
Theoremrbaibd 910 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  ->  ( ps 
 <->  ( ch  /\  th ) ) )   =>    |-  ( ( ph  /\ 
 th )  ->  ( ps 
 <->  ch ) )
 
Theorempm5.44 911 Theorem *5.44 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  ->  ps )  ->  ( ( ph  ->  ch )  <->  ( ph  ->  ( ps  /\  ch )
 ) ) )
 
Theorempm5.6dc 912 Conjunction in antecedent versus disjunction in consequent, for a decidable proposition. Theorem *5.6 of [WhiteheadRussell] p. 125, with decidability condition added. The reverse implication holds for all propositions (see pm5.6r 913). (Contributed by Jim Kingdon, 2-Apr-2018.)
 |-  (DECID 
 ps  ->  ( ( (
 ph  /\  -.  ps )  ->  ch )  <->  ( ph  ->  ( ps  \/  ch )
 ) ) )
 
Theorempm5.6r 913 Conjunction in antecedent versus disjunction in consequent. One direction of Theorem *5.6 of [WhiteheadRussell] p. 125. If  ps is decidable, the converse also holds (see pm5.6dc 912). (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( ph  ->  ( ps  \/  ch )
 )  ->  ( ( ph  /\  -.  ps )  ->  ch ) )
 
Theoremorcanai 914 Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.)
 |-  ( ph  ->  ( ps  \/  ch ) )   =>    |-  ( ( ph  /\  -.  ps )  ->  ch )
 
Theoremintnan 915 Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.)
 |- 
 -.  ph   =>    |- 
 -.  ( ps  /\  ph )
 
Theoremintnanr 916 Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
 |- 
 -.  ph   =>    |- 
 -.  ( ph  /\  ps )
 
Theoremintnand 917 Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  -.  ( ch  /\  ps ) )
 
Theoremintnanrd 918 Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  -.  ( ps  /\  ch ) )
 
Theoremdcan 919 A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  -> DECID 
 ( ph  /\  ps )
 ) )
 
Theoremdcor 920 A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  -> DECID 
 ( ph  \/  ps )
 ) )
 
Theoremdcbi 921 An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  -> DECID 
 ( ph  <->  ps ) ) )
 
Theoremannimdc 922 Express conjunction in terms of implication. The forward direction, annimim 676, is valid for all propositions, but as an equivalence, it requires a decidability condition. (Contributed by Jim Kingdon, 25-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  /\ 
 -.  ps )  <->  -.  ( ph  ->  ps ) ) ) )
 
Theorempm4.55dc 923 Theorem *4.55 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 2-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( -.  ph  /\  ps )  <->  (
 ph  \/  -.  ps )
 ) ) )
 
Theoremorandc 924 Disjunction in terms of conjunction (De Morgan's law), for decidable propositions. Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by Jim Kingdon, 13-Dec-2021.)
 |-  ( (DECID 
 ph  /\ DECID  ps )  ->  (
 ( ph  \/  ps )  <->  -.  ( -.  ph  /\  -.  ps ) ) )
 
Theoremmpbiran 925 Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) (Revised by NM, 9-Jan-2015.)
 |- 
 ps   &    |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ph  <->  ch )
 
Theoremmpbiran2 926 Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.)
 |- 
 ch   &    |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ph  <->  ps )
 
Theoremmpbir2an 927 Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.)
 |- 
 ps   &    |- 
 ch   &    |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ph
 
Theoremmpbi2and 928 Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  ( ( ps  /\  ch ) 
 <-> 
 th ) )   =>    |-  ( ph  ->  th )
 
Theoremmpbir2and 929 Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ( ps  <->  ( ch  /\  th ) ) )   =>    |-  ( ph  ->  ps )
 
Theorempm5.62dc 930 Theorem *5.62 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
 |-  (DECID 
 ps  ->  ( ( (
 ph  /\  ps )  \/  -.  ps )  <->  ( ph  \/  -. 
 ps ) ) )
 
Theorempm5.63dc 931 Theorem *5.63 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  \/  ps )  <->  ( ph  \/  ( -.  ph  /\  ps )
 ) ) )
 
Theorembianfi 932 A wff conjoined with falsehood is false. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
 |- 
 -.  ph   =>    |-  ( ph  <->  ( ps  /\  ph ) )
 
Theorembianfd 933 A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  ( ps 
 <->  ( ps  /\  ch ) ) )
 
Theorempm4.43 934 Theorem *4.43 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
 |-  ( ph  <->  ( ( ph  \/  ps )  /\  ( ph  \/  -.  ps )
 ) )
 
Theorempm4.82 935 Theorem *4.82 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  -.  ps )
 ) 
 <->  -.  ph )
 
Theorempm4.83dc 936 Theorem *4.83 of [WhiteheadRussell] p. 122, for decidable propositions. As with other case elimination theorems, like pm2.61dc 851, it only holds for decidable propositions. (Contributed by Jim Kingdon, 12-May-2018.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  ->  ps )  /\  ( -.  ph  ->  ps )
 ) 
 <->  ps ) )
 
Theorembiantr 937 A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.)
 |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  ps ) )  ->  ( ph  <->  ch ) )
 
Theoremorbididc 938 Disjunction distributes over the biconditional, for a decidable proposition. Based on an axiom of system DS in Vladimir Lifschitz, "On calculational proofs" (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3384. (Contributed by Jim Kingdon, 2-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  \/  ( ps  <->  ch ) )  <->  ( ( ph  \/  ps )  <->  ( ph  \/  ch ) ) ) )
 
Theorempm5.7dc 939 Disjunction distributes over the biconditional, for a decidable proposition. Based on theorem *5.7 of [WhiteheadRussell] p. 125. This theorem is similar to orbididc 938. (Contributed by Jim Kingdon, 2-Apr-2018.)
 |-  (DECID 
 ch  ->  ( ( (
 ph  \/  ch )  <->  ( ps  \/  ch )
 ) 
 <->  ( ch  \/  ( ph 
 <->  ps ) ) ) )
 
Theorembigolden 940 Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by NM, 10-Jan-2005.)
 |-  ( ( ( ph  /\ 
 ps )  <->  ph )  <->  ( ps  <->  ( ph  \/  ps ) ) )
 
Theoremanordc 941 Conjunction in terms of disjunction (DeMorgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120, but where the propositions are decidable. The forward direction, pm3.1 744, holds for all propositions, but the equivalence only holds given decidability. (Contributed by Jim Kingdon, 21-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  /\ 
 ps )  <->  -.  ( -.  ph  \/  -.  ps ) ) ) )
 
Theorempm3.11dc 942 Theorem *3.11 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.1 744, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 22-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( -.  ph  \/  -.  ps )  ->  ( ph  /\  ps ) ) ) )
 
Theorempm3.12dc 943 Theorem *3.12 of [WhiteheadRussell] p. 111, but for decidable propositions. (Contributed by Jim Kingdon, 22-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( -.  ph  \/  -.  ps )  \/  ( ph  /\  ps ) ) ) )
 
Theorempm3.13dc 944 Theorem *3.13 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.14 743, holds for all propositions. (Contributed by Jim Kingdon, 22-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( ph  /\  ps )  ->  ( -.  ph  \/  -.  ps ) ) ) )
 
Theoremdn1dc 945 DN1 for decidable propositions. Without the decidability conditions, DN1 can serve as a single axiom for Boolean algebra. See http://www-unix.mcs.anl.gov/~mccune/papers/basax/v12.pdf. (Contributed by Jim Kingdon, 22-Apr-2018.)
 |-  ( (DECID 
 ph  /\  (DECID  ps  /\  (DECID  ch  /\ DECID  th ) ) )  ->  ( -.  ( -.  ( -.  ( ph  \/  ps )  \/  ch )  \/ 
 -.  ( ph  \/  -.  ( -.  ch  \/  -.  ( ch  \/  th ) ) ) )  <->  ch ) )
 
Theorempm5.71dc 946 Decidable proposition version of theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.) (Modified for decidability by Jim Kingdon, 19-Apr-2018.)
 |-  (DECID 
 ps  ->  ( ( ps 
 ->  -.  ch )  ->  ( ( ( ph  \/  ps )  /\  ch ) 
 <->  ( ph  /\  ch ) ) ) )
 
Theorempm5.75 947 Theorem *5.75 of [WhiteheadRussell] p. 126. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2012.)
 |-  ( ( ( ch 
 ->  -.  ps )  /\  ( ph  <->  ( ps  \/  ch ) ) )  ->  ( ( ph  /\  -.  ps )  <->  ch ) )
 
Theorembimsc1 948 Removal of conjunct from one side of an equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ( ph  ->  ps )  /\  ( ch 
 <->  ( ps  /\  ph )
 ) )  ->  ( ch 
 <-> 
 ph ) )
 
Theoremccase 949 Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.)
 |-  ( ( ph  /\  ps )  ->  ta )   &    |-  ( ( ch 
 /\  ps )  ->  ta )   &    |-  (
 ( ph  /\  th )  ->  ta )   &    |-  ( ( ch 
 /\  th )  ->  ta )   =>    |-  (
 ( ( ph  \/  ch )  /\  ( ps 
 \/  th ) )  ->  ta )
 
Theoremccased 950 Deduction for combining cases. (Contributed by NM, 9-May-2004.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  et ) )   &    |-  ( ph  ->  ( ( th  /\  ch )  ->  et ) )   &    |-  ( ph  ->  ( ( ps  /\  ta )  ->  et ) )   &    |-  ( ph  ->  ( ( th  /\  ta )  ->  et ) )   =>    |-  ( ph  ->  (
 ( ( ps  \/  th )  /\  ( ch 
 \/  ta ) )  ->  et ) )
 
Theoremccase2 951 Inference for combining cases. (Contributed by NM, 29-Jul-1999.)
 |-  ( ( ph  /\  ps )  ->  ta )   &    |-  ( ch  ->  ta )   &    |-  ( th  ->  ta )   =>    |-  ( ( ( ph  \/  ch )  /\  ( ps  \/  th ) ) 
 ->  ta )
 
Theoremniabn 952 Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.)
 |-  ph   =>    |-  ( -.  ps  ->  ( ( ch  /\  ps ) 
 <->  -.  ph ) )
 
Theoremdedlem0a 953 Alternate version of dedlema 954. (Contributed by NM, 2-Apr-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ph  ->  ( ps 
 <->  ( ( ch  ->  ph )  ->  ( ps  /\  ph ) ) ) )
 
Theoremdedlema 954 Lemma for iftrue 3510. (Contributed by NM, 26-Jun-2002.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |-  ( ph  ->  ( ps 
 <->  ( ( ps  /\  ph )  \/  ( ch 
 /\  -.  ph ) ) ) )
 
Theoremdedlemb 955 Lemma for iffalse 3513. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |-  ( -.  ph  ->  ( ch  <->  ( ( ps 
 /\  ph )  \/  ( ch  /\  -.  ph )
 ) ) )
 
Theorempm4.42r 956 One direction of Theorem *4.42 of [WhiteheadRussell] p. 119. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( ( ph  /\ 
 ps )  \/  ( ph  /\  -.  ps )
 )  ->  ph )
 
Theoremninba 957 Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.)
 |-  ph   =>    |-  ( -.  ps  ->  ( -.  ph  <->  ( ch  /\  ps ) ) )
 
Theoremprlem1 958 A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
 |-  ( ph  ->  ( et 
 <->  ch ) )   &    |-  ( ps  ->  -.  th )   =>    |-  ( ph  ->  ( ps  ->  ( ( ( ps  /\  ch )  \/  ( th  /\ 
 ta ) )  ->  et ) ) )
 
Theoremprlem2 959 A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
 |-  ( ( ( ph  /\ 
 ps )  \/  ( ch  /\  th ) )  <-> 
 ( ( ph  \/  ch )  /\  ( (
 ph  /\  ps )  \/  ( ch  /\  th ) ) ) )
 
Theoremoplem1 960 A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
 |-  ( ph  ->  ( ps  \/  ch ) )   &    |-  ( ph  ->  ( th  \/  ta ) )   &    |-  ( ps 
 <-> 
 th )   &    |-  ( ch  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ps )
 
Theoremrnlem 961 Lemma used in construction of real numbers. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ( ch  /\  th ) )  <-> 
 ( ( ( ph  /\ 
 ch )  /\  ( ps  /\  th ) ) 
 /\  ( ( ph  /\ 
 th )  /\  ( ps  /\  ch ) ) ) )
 
1.2.11  Abbreviated conjunction and disjunction of three wff's
 
Syntaxw3o 962 Extend wff definition to include 3-way disjunction ('or').
 wff  ( ph  \/  ps  \/  ch )
 
Syntaxw3a 963 Extend wff definition to include 3-way conjunction ('and').
 wff  ( ph  /\  ps  /\ 
 ch )
 
Definitiondf-3or 964 Define disjunction ('or') of 3 wff's. Definition *2.33 of [WhiteheadRussell] p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass 757. (Contributed by NM, 8-Apr-1994.)
 |-  ( ( ph  \/  ps 
 \/  ch )  <->  ( ( ph  \/  ps )  \/  ch ) )
 
Definitiondf-3an 965 Define conjunction ('and') of 3 wff.s. Definition *4.34 of [WhiteheadRussell] p. 118. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law anass 399. (Contributed by NM, 8-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  <->  ( ( ph  /\ 
 ps )  /\  ch ) )
 
Theorem3orass 966 Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.)
 |-  ( ( ph  \/  ps 
 \/  ch )  <->  ( ph  \/  ( ps  \/  ch )
 ) )
 
Theorem3anass 967 Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  <->  ( ph  /\  ( ps  /\  ch ) ) )
 
Theorem3anrot 968 Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  <->  ( ps  /\  ch 
 /\  ph ) )
 
Theorem3orrot 969 Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995.)
 |-  ( ( ph  \/  ps 
 \/  ch )  <->  ( ps  \/  ch 
 \/  ph ) )
 
Theorem3ancoma 970 Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  <->  ( ps  /\  ph 
 /\  ch ) )
 
Theorem3ancomb 971 Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  <->  ( ph  /\  ch  /\ 
 ps ) )
 
Theorem3orcomb 972 Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.)
 |-  ( ( ph  \/  ps 
 \/  ch )  <->  ( ph  \/  ch 
 \/  ps ) )
 
Theorem3anrev 973 Reversal law for triple conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  <->  ( ch  /\  ps 
 /\  ph ) )
 
Theorem3anan32 974 Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  <->  ( ( ph  /\ 
 ch )  /\  ps ) )
 
Theorem3anan12 975 Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  <->  ( ps  /\  ( ph  /\  ch )
 ) )
 
Theoremanandi3 976 Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  <->  ( ( ph  /\ 
 ps )  /\  ( ph  /\  ch ) ) )
 
Theoremanandi3r 977 Distribution of triple conjunction over conjunction. (Contributed by David A. Wheeler, 4-Nov-2018.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  <->  ( ( ph  /\ 
 ps )  /\  ( ch  /\  ps ) ) )
 
Theorem3ioran 978 Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.)
 |-  ( -.  ( ph  \/  ps  \/  ch )  <->  ( -.  ph  /\  -.  ps  /\ 
 -.  ch ) )
 
Theorem3simpa 979 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ( ph  /\  ps ) )
 
Theorem3simpb 980 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ( ph  /\  ch ) )
 
Theorem3simpc 981 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ( ps  /\  ch ) )
 
Theoremsimp1 982 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ph )
 
Theoremsimp2 983 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ps )
 
Theoremsimp3 984 Simplification of triple conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ch )
 
Theoremsimpl1 985 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ph )
 
Theoremsimpl2 986 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ps )
 
Theoremsimpl3 987 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ch )
 
Theoremsimpr1 988 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
 |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ps )
 
Theoremsimpr2 989 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
 |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ch )
 
Theoremsimpr3 990 Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.)
 |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  th )
 
Theoremsimp1i 991 Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
 |-  ( ph  /\  ps  /\ 
 ch )   =>    |-  ph
 
Theoremsimp2i 992 Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
 |-  ( ph  /\  ps  /\ 
 ch )   =>    |- 
 ps
 
Theoremsimp3i 993 Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.)
 |-  ( ph  /\  ps  /\ 
 ch )   =>    |- 
 ch
 
Theoremsimp1d 994 Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
 |-  ( ph  ->  ( ps  /\  ch  /\  th ) )   =>    |-  ( ph  ->  ps )
 
Theoremsimp2d 995 Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
 |-  ( ph  ->  ( ps  /\  ch  /\  th ) )   =>    |-  ( ph  ->  ch )
 
Theoremsimp3d 996 Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
 |-  ( ph  ->  ( ps  /\  ch  /\  th ) )   =>    |-  ( ph  ->  th )
 
Theoremsimp1bi 997 Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  <->  ( ps  /\  ch 
 /\  th ) )   =>    |-  ( ph  ->  ps )
 
Theoremsimp2bi 998 Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  <->  ( ps  /\  ch 
 /\  th ) )   =>    |-  ( ph  ->  ch )
 
Theoremsimp3bi 999 Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  <->  ( ps  /\  ch 
 /\  th ) )   =>    |-  ( ph  ->  th )
 
Theorem3adant1 1000 Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  ( ( th  /\  ph 
 /\  ps )  ->  ch )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13614
  Copyright terms: Public domain < Previous  Next >