HomeHome Intuitionistic Logic Explorer
Theorem List (p. 10 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 901-1000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremimimorbdc 901 Simplify an implication between implications, for a decidable proposition. (Contributed by Jim Kingdon, 18-Mar-2018.)
 |-  (DECID 
 ps  ->  ( ( ( ps  ->  ch )  ->  ( ph  ->  ch )
 ) 
 <->  ( ph  ->  ( ps  \/  ch ) ) ) )
 
Theoremimordc 902 Implication in terms of disjunction for a decidable proposition. Based on theorem *4.6 of [WhiteheadRussell] p. 120. The reverse direction, imorr 726, holds for all propositions. (Contributed by Jim Kingdon, 20-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  ->  ps )  <->  ( -.  ph  \/  ps ) ) )
 
Theorempm4.62dc 903 Implication in terms of disjunction. Like Theorem *4.62 of [WhiteheadRussell] p. 120, but for a decidable antecedent. (Contributed by Jim Kingdon, 21-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  ->  -.  ps )  <->  ( -.  ph  \/  -.  ps ) ) )
 
Theoremianordc 904 Negated conjunction in terms of disjunction (DeMorgan's law). Theorem *4.51 of [WhiteheadRussell] p. 120, but where one proposition is decidable. The reverse direction, pm3.14 758, holds for all propositions, but the equivalence only holds where one proposition is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
 |-  (DECID 
 ph  ->  ( -.  ( ph  /\  ps )  <->  ( -.  ph  \/  -.  ps ) ) )
 
Theorempm4.64dc 905 Theorem *4.64 of [WhiteheadRussell] p. 120, given a decidability condition. The reverse direction, pm2.53 727, holds for all propositions. (Contributed by Jim Kingdon, 2-May-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  ps )  <->  ( ph  \/  ps ) ) )
 
Theorempm4.66dc 906 Theorem *4.66 of [WhiteheadRussell] p. 120, given a decidability condition. (Contributed by Jim Kingdon, 2-May-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  -.  ps )  <->  (
 ph  \/  -.  ps )
 ) )
 
Theorempm4.54dc 907 Theorem *4.54 of [WhiteheadRussell] p. 120, for decidable propositions. One form of DeMorgan's law. (Contributed by Jim Kingdon, 2-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( -.  ph  /\  ps )  <->  -.  ( ph  \/  -. 
 ps ) ) ) )
 
Theorempm4.79dc 908 Equivalence between a disjunction of two implications, and a conjunction and an implication. Based on theorem *4.79 of [WhiteheadRussell] p. 121 but with additional decidability antecedents. (Contributed by Jim Kingdon, 28-Mar-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ( ps  ->  ph )  \/  ( ch  ->  ph )
 ) 
 <->  ( ( ps  /\  ch )  ->  ph ) ) ) )
 
Theorempm5.17dc 909 Two ways of stating exclusive-or which are equivalent for a decidable proposition. Based on theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by Jim Kingdon, 16-Apr-2018.)
 |-  (DECID 
 ps  ->  ( ( (
 ph  \/  ps )  /\  -.  ( ph  /\  ps ) )  <->  ( ph  <->  -.  ps ) ) )
 
Theorempm2.85dc 910 Reverse distribution of disjunction over implication, given decidability. Based on theorem *2.85 of [WhiteheadRussell] p. 108. (Contributed by Jim Kingdon, 1-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  \/  ps )  ->  ( ph  \/  ch ) )  ->  ( ph  \/  ( ps  ->  ch )
 ) ) )
 
Theoremorimdidc 911 Disjunction distributes over implication. The forward direction, pm2.76 813, is valid intuitionistically. The reverse direction holds if  ph is decidable, as can be seen at pm2.85dc 910. (Contributed by Jim Kingdon, 1-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  \/  ( ps  ->  ch )
 ) 
 <->  ( ( ph  \/  ps )  ->  ( ph  \/  ch ) ) ) )
 
Theorempm2.26dc 912 Decidable proposition version of theorem *2.26 of [WhiteheadRussell] p. 104. (Contributed by Jim Kingdon, 20-Apr-2018.)
 |-  (DECID 
 ph  ->  ( -.  ph  \/  ( ( ph  ->  ps )  ->  ps )
 ) )
 
Theorempm4.81dc 913 Theorem *4.81 of [WhiteheadRussell] p. 122, for decidable propositions. This one needs a decidability condition, but compare with pm4.8 712 which holds for all propositions. (Contributed by Jim Kingdon, 4-Jul-2018.)
 |-  (DECID 
 ph  ->  ( ( -.  ph  ->  ph )  <->  ph ) )
 
Theorempm5.11dc 914 A decidable proposition or its negation implies a second proposition. Based on theorem *5.11 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 29-Mar-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  ->  ps )  \/  ( -.  ph  ->  ps )
 ) ) )
 
Theorempm5.12dc 915 Excluded middle with antecedents for a decidable consequent. Based on theorem *5.12 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
 |-  (DECID 
 ps  ->  ( ( ph  ->  ps )  \/  ( ph  ->  -.  ps )
 ) )
 
Theorempm5.14dc 916 A decidable proposition is implied by or implies other propositions. Based on theorem *5.14 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
 |-  (DECID 
 ps  ->  ( ( ph  ->  ps )  \/  ( ps  ->  ch ) ) )
 
Theorempm5.13dc 917 An implication holds in at least one direction, where one proposition is decidable. Based on theorem *5.13 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 30-Mar-2018.)
 |-  (DECID 
 ps  ->  ( ( ph  ->  ps )  \/  ( ps  ->  ph ) ) )
 
Theorempm5.55dc 918 A disjunction is equivalent to one of its disjuncts, given a decidable disjunct. Based on theorem *5.55 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  \/  ps )  <->  ph )  \/  ( (
 ph  \/  ps )  <->  ps ) ) )
 
Theorempeircedc 919 Peirce's theorem for a decidable proposition. This odd-looking theorem can be seen as an alternative to exmiddc 841, condc 858, or notnotrdc 848 in the sense of expressing the "difference" between an intuitionistic system of propositional calculus and a classical system. In intuitionistic logic, it only holds for decidable propositions. (Contributed by Jim Kingdon, 3-Jul-2018.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  ->  ps )  ->  ph )  -> 
 ph ) )
 
Theoremlooinvdc 920 The Inversion Axiom of the infinite-valued sentential logic (L-infinity) of Lukasiewicz, but where one of the propositions is decidable. Using dfor2dc 900, we can see that this expresses "disjunction commutes." Theorem *2.69 of [WhiteheadRussell] p. 108 (plus the decidability condition). (Contributed by NM, 12-Aug-2004.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  ->  ps )  ->  ps )  ->  ( ( ps  ->  ph )  ->  ph ) ) )
 
1.2.10  Miscellaneous theorems of propositional calculus
 
Theorempm5.21nd 921 Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.)
 |-  ( ( ph  /\  ps )  ->  th )   &    |-  ( ( ph  /\ 
 ch )  ->  th )   &    |-  ( th  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( ps  <->  ch ) )
 
Theorempm5.35 922 Theorem *5.35 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  <->  ch ) ) )
 
Theorempm5.54dc 923 A conjunction is equivalent to one of its conjuncts, given a decidable conjunct. Based on theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  /\  ps )  <->  ph )  \/  ( (
 ph  /\  ps )  <->  ps ) ) )
 
Theorembaib 924 Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ps  ->  ( ph 
 <->  ch ) )
 
Theorembaibr 925 Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ps  ->  ( ch 
 <-> 
 ph ) )
 
Theoremrbaib 926 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ch  ->  ( ph 
 <->  ps ) )
 
Theoremrbaibr 927 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ch  ->  ( ps 
 <-> 
 ph ) )
 
Theorembaibd 928 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  ->  ( ps 
 <->  ( ch  /\  th ) ) )   =>    |-  ( ( ph  /\ 
 ch )  ->  ( ps 
 <-> 
 th ) )
 
Theoremrbaibd 929 Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( ph  ->  ( ps 
 <->  ( ch  /\  th ) ) )   =>    |-  ( ( ph  /\ 
 th )  ->  ( ps 
 <->  ch ) )
 
Theorempm5.44 930 Theorem *5.44 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ph  ->  ps )  ->  ( ( ph  ->  ch )  <->  ( ph  ->  ( ps  /\  ch )
 ) ) )
 
Theorempm5.6dc 931 Conjunction in antecedent versus disjunction in consequent, for a decidable proposition. Theorem *5.6 of [WhiteheadRussell] p. 125, with decidability condition added. The reverse implication holds for all propositions (see pm5.6r 932). (Contributed by Jim Kingdon, 2-Apr-2018.)
 |-  (DECID 
 ps  ->  ( ( (
 ph  /\  -.  ps )  ->  ch )  <->  ( ph  ->  ( ps  \/  ch )
 ) ) )
 
Theorempm5.6r 932 Conjunction in antecedent versus disjunction in consequent. One direction of Theorem *5.6 of [WhiteheadRussell] p. 125. If  ps is decidable, the converse also holds (see pm5.6dc 931). (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( ph  ->  ( ps  \/  ch )
 )  ->  ( ( ph  /\  -.  ps )  ->  ch ) )
 
Theoremorcanai 933 Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.)
 |-  ( ph  ->  ( ps  \/  ch ) )   =>    |-  ( ( ph  /\  -.  ps )  ->  ch )
 
Theoremintnan 934 Introduction of conjunct inside of a contradiction. (Contributed by NM, 16-Sep-1993.)
 |- 
 -.  ph   =>    |- 
 -.  ( ps  /\  ph )
 
Theoremintnanr 935 Introduction of conjunct inside of a contradiction. (Contributed by NM, 3-Apr-1995.)
 |- 
 -.  ph   =>    |- 
 -.  ( ph  /\  ps )
 
Theoremintnand 936 Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  -.  ( ch  /\  ps ) )
 
Theoremintnanrd 937 Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  -.  ( ps  /\  ch ) )
 
Theoremdcand 938 A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.) (Revised by BJ, 14-Nov-2024.)
 |-  ( ph  -> DECID  ps )   &    |-  ( ph  -> DECID  ch )   =>    |-  ( ph  -> DECID 
 ( ps  /\  ch ) )
 
Theoremdcan 939 A conjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
 |-  ( (DECID 
 ph  /\ DECID  ps )  -> DECID  ( ph  /\  ps ) )
 
Theoremdcan2 940 A conjunction of two decidable propositions is decidable, expressed in a curried form as compared to dcan 939. This is deprecated; it's trivial to recreate with ex 115, but it's here in case someone is using this older form. (Contributed by Jim Kingdon, 12-Apr-2018.) (New usage is discouraged.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  -> DECID 
 ( ph  /\  ps )
 ) )
 
Theoremdcor 941 A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  -> DECID 
 ( ph  \/  ps )
 ) )
 
Theoremdcbi 942 An equivalence of two decidable propositions is decidable. (Contributed by Jim Kingdon, 12-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  -> DECID 
 ( ph  <->  ps ) ) )
 
Theoremannimdc 943 Express conjunction in terms of implication. The forward direction, annimim 690, is valid for all propositions, but as an equivalence, it requires a decidability condition. (Contributed by Jim Kingdon, 25-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  /\ 
 -.  ps )  <->  -.  ( ph  ->  ps ) ) ) )
 
Theorempm4.55dc 944 Theorem *4.55 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 2-May-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( -.  ph  /\  ps )  <->  (
 ph  \/  -.  ps )
 ) ) )
 
Theoremorandc 945 Disjunction in terms of conjunction (De Morgan's law), for decidable propositions. Compare Theorem *4.57 of [WhiteheadRussell] p. 120. (Contributed by Jim Kingdon, 13-Dec-2021.)
 |-  ( (DECID 
 ph  /\ DECID  ps )  ->  (
 ( ph  \/  ps )  <->  -.  ( -.  ph  /\  -.  ps ) ) )
 
Theoremmpbiran 946 Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) (Revised by NM, 9-Jan-2015.)
 |- 
 ps   &    |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ph  <->  ch )
 
Theoremmpbiran2 947 Detach truth from conjunction in biconditional. (Contributed by NM, 22-Feb-1996.) (Revised by NM, 9-Jan-2015.)
 |- 
 ch   &    |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ( ph  <->  ps )
 
Theoremmpbir2an 948 Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.)
 |- 
 ps   &    |- 
 ch   &    |-  ( ph  <->  ( ps  /\  ch ) )   =>    |-  ph
 
Theoremmpbi2and 949 Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  ( ( ps  /\  ch ) 
 <-> 
 th ) )   =>    |-  ( ph  ->  th )
 
Theoremmpbir2and 950 Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
 |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ( ps  <->  ( ch  /\  th ) ) )   =>    |-  ( ph  ->  ps )
 
Theorempm5.62dc 951 Theorem *5.62 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
 |-  (DECID 
 ps  ->  ( ( (
 ph  /\  ps )  \/  -.  ps )  <->  ( ph  \/  -. 
 ps ) ) )
 
Theorempm5.63dc 952 Theorem *5.63 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  \/  ps )  <->  ( ph  \/  ( -.  ph  /\  ps )
 ) ) )
 
Theorembianfi 953 A wff conjoined with falsehood is false. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
 |- 
 -.  ph   =>    |-  ( ph  <->  ( ps  /\  ph ) )
 
Theorembianfd 954 A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.)
 |-  ( ph  ->  -.  ps )   =>    |-  ( ph  ->  ( ps 
 <->  ( ps  /\  ch ) ) )
 
Theorempm4.43 955 Theorem *4.43 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 26-Nov-2012.)
 |-  ( ph  <->  ( ( ph  \/  ps )  /\  ( ph  \/  -.  ps )
 ) )
 
Theorempm4.82 956 Theorem *4.82 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.)
 |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  -.  ps )
 ) 
 <->  -.  ph )
 
Theorempm4.83dc 957 Theorem *4.83 of [WhiteheadRussell] p. 122, for decidable propositions. As with other case elimination theorems, like pm2.61dc 870, it only holds for decidable propositions. (Contributed by Jim Kingdon, 12-May-2018.)
 |-  (DECID 
 ph  ->  ( ( (
 ph  ->  ps )  /\  ( -.  ph  ->  ps )
 ) 
 <->  ps ) )
 
Theorembiantr 958 A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.)
 |-  ( ( ( ph  <->  ps )  /\  ( ch  <->  ps ) )  ->  ( ph  <->  ch ) )
 
Theoremorbididc 959 Disjunction distributes over the biconditional, for a decidable proposition. Based on an axiom of system DS in Vladimir Lifschitz, "On calculational proofs" (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3384. (Contributed by Jim Kingdon, 2-Apr-2018.)
 |-  (DECID 
 ph  ->  ( ( ph  \/  ( ps  <->  ch ) )  <->  ( ( ph  \/  ps )  <->  ( ph  \/  ch ) ) ) )
 
Theorempm5.7dc 960 Disjunction distributes over the biconditional, for a decidable proposition. Based on theorem *5.7 of [WhiteheadRussell] p. 125. This theorem is similar to orbididc 959. (Contributed by Jim Kingdon, 2-Apr-2018.)
 |-  (DECID 
 ch  ->  ( ( (
 ph  \/  ch )  <->  ( ps  \/  ch )
 ) 
 <->  ( ch  \/  ( ph 
 <->  ps ) ) ) )
 
Theorembigolden 961 Dijkstra-Scholten's Golden Rule for calculational proofs. (Contributed by NM, 10-Jan-2005.)
 |-  ( ( ( ph  /\ 
 ps )  <->  ph )  <->  ( ps  <->  ( ph  \/  ps ) ) )
 
Theoremanordc 962 Conjunction in terms of disjunction (DeMorgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120, but where the propositions are decidable. The forward direction, pm3.1 759, holds for all propositions, but the equivalence only holds given decidability. (Contributed by Jim Kingdon, 21-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( ph  /\ 
 ps )  <->  -.  ( -.  ph  \/  -.  ps ) ) ) )
 
Theorempm3.11dc 963 Theorem *3.11 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.1 759, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 22-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( -.  ph  \/  -.  ps )  ->  ( ph  /\  ps ) ) ) )
 
Theorempm3.12dc 964 Theorem *3.12 of [WhiteheadRussell] p. 111, but for decidable propositions. (Contributed by Jim Kingdon, 22-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( ( -.  ph  \/  -.  ps )  \/  ( ph  /\  ps ) ) ) )
 
Theorempm3.13dc 965 Theorem *3.13 of [WhiteheadRussell] p. 111, but for decidable propositions. The converse, pm3.14 758, holds for all propositions. (Contributed by Jim Kingdon, 22-Apr-2018.)
 |-  (DECID 
 ph  ->  (DECID 
 ps  ->  ( -.  ( ph  /\  ps )  ->  ( -.  ph  \/  -.  ps ) ) ) )
 
Theoremdn1dc 966 DN1 for decidable propositions. Without the decidability conditions, DN1 can serve as a single axiom for Boolean algebra. See http://www-unix.mcs.anl.gov/~mccune/papers/basax/v12.pdf. (Contributed by Jim Kingdon, 22-Apr-2018.)
 |-  ( (DECID 
 ph  /\  (DECID  ps  /\  (DECID  ch  /\ DECID  th ) ) )  ->  ( -.  ( -.  ( -.  ( ph  \/  ps )  \/  ch )  \/ 
 -.  ( ph  \/  -.  ( -.  ch  \/  -.  ( ch  \/  th ) ) ) )  <->  ch ) )
 
Theorempm5.71dc 967 Decidable proposition version of theorem *5.71 of [WhiteheadRussell] p. 125. (Contributed by Roy F. Longton, 23-Jun-2005.) (Modified for decidability by Jim Kingdon, 19-Apr-2018.)
 |-  (DECID 
 ps  ->  ( ( ps 
 ->  -.  ch )  ->  ( ( ( ph  \/  ps )  /\  ch ) 
 <->  ( ph  /\  ch ) ) ) )
 
Theorempm5.75 968 Theorem *5.75 of [WhiteheadRussell] p. 126. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 23-Dec-2012.)
 |-  ( ( ( ch 
 ->  -.  ps )  /\  ( ph  <->  ( ps  \/  ch ) ) )  ->  ( ( ph  /\  -.  ps )  <->  ch ) )
 
Theorembimsc1 969 Removal of conjunct from one side of an equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( ( ph  ->  ps )  /\  ( ch 
 <->  ( ps  /\  ph )
 ) )  ->  ( ch 
 <-> 
 ph ) )
 
Theoremccase 970 Inference for combining cases. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Wolf Lammen, 6-Jan-2013.)
 |-  ( ( ph  /\  ps )  ->  ta )   &    |-  ( ( ch 
 /\  ps )  ->  ta )   &    |-  (
 ( ph  /\  th )  ->  ta )   &    |-  ( ( ch 
 /\  th )  ->  ta )   =>    |-  (
 ( ( ph  \/  ch )  /\  ( ps 
 \/  th ) )  ->  ta )
 
Theoremccased 971 Deduction for combining cases. (Contributed by NM, 9-May-2004.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  et ) )   &    |-  ( ph  ->  ( ( th  /\  ch )  ->  et ) )   &    |-  ( ph  ->  ( ( ps  /\  ta )  ->  et ) )   &    |-  ( ph  ->  ( ( th  /\  ta )  ->  et ) )   =>    |-  ( ph  ->  (
 ( ( ps  \/  th )  /\  ( ch 
 \/  ta ) )  ->  et ) )
 
Theoremccase2 972 Inference for combining cases. (Contributed by NM, 29-Jul-1999.)
 |-  ( ( ph  /\  ps )  ->  ta )   &    |-  ( ch  ->  ta )   &    |-  ( th  ->  ta )   =>    |-  ( ( ( ph  \/  ch )  /\  ( ps  \/  th ) ) 
 ->  ta )
 
Theoremniabn 973 Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.)
 |-  ph   =>    |-  ( -.  ps  ->  ( ( ch  /\  ps ) 
 <->  -.  ph ) )
 
Theoremdedlem0a 974 Alternate version of dedlema 975. (Contributed by NM, 2-Apr-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
 |-  ( ph  ->  ( ps 
 <->  ( ( ch  ->  ph )  ->  ( ps  /\  ph ) ) ) )
 
Theoremdedlema 975 Lemma for iftrue 3607. (Contributed by NM, 26-Jun-2002.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |-  ( ph  ->  ( ps 
 <->  ( ( ps  /\  ph )  \/  ( ch 
 /\  -.  ph ) ) ) )
 
Theoremdedlemb 976 Lemma for iffalse 3610. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.)
 |-  ( -.  ph  ->  ( ch  <->  ( ( ps 
 /\  ph )  \/  ( ch  /\  -.  ph )
 ) ) )
 
Theorempm4.42r 977 One direction of Theorem *4.42 of [WhiteheadRussell] p. 119. (Contributed by Jim Kingdon, 4-Aug-2018.)
 |-  ( ( ( ph  /\ 
 ps )  \/  ( ph  /\  -.  ps )
 )  ->  ph )
 
Theoremninba 978 Miscellaneous inference relating falsehoods. (Contributed by NM, 31-Mar-1994.)
 |-  ph   =>    |-  ( -.  ps  ->  ( -.  ph  <->  ( ch  /\  ps ) ) )
 
Theoremprlem1 979 A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
 |-  ( ph  ->  ( et 
 <->  ch ) )   &    |-  ( ps  ->  -.  th )   =>    |-  ( ph  ->  ( ps  ->  ( ( ( ps  /\  ch )  \/  ( th  /\ 
 ta ) )  ->  et ) ) )
 
Theoremprlem2 980 A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
 |-  ( ( ( ph  /\ 
 ps )  \/  ( ch  /\  th ) )  <-> 
 ( ( ph  \/  ch )  /\  ( (
 ph  /\  ps )  \/  ( ch  /\  th ) ) ) )
 
Theoremoplem1 981 A specialized lemma for set theory (ordered pair theorem). (Contributed by NM, 18-Oct-1995.) (Proof shortened by Wolf Lammen, 8-Dec-2012.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
 |-  ( ph  ->  ( ps  \/  ch ) )   &    |-  ( ph  ->  ( th  \/  ta ) )   &    |-  ( ps 
 <-> 
 th )   &    |-  ( ch  ->  ( th  <->  ta ) )   =>    |-  ( ph  ->  ps )
 
Theoremrnlem 982 Lemma used in construction of real numbers. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ( ch  /\  th ) )  <-> 
 ( ( ( ph  /\ 
 ch )  /\  ( ps  /\  th ) ) 
 /\  ( ( ph  /\ 
 th )  /\  ( ps  /\  ch ) ) ) )
 
1.2.11  The conditional operator for propositions

This subsection introduces the conditional operator for propositions, denoted by if- ( ph ,  ps ,  ch ) (see df-ifp 984). It is the analogue for propositions of the conditional operator for classes, denoted by  if ( ph ,  A ,  B ) (see df-if 3603).

 
Syntaxwif 983 Extend wff notation to include the conditional operator for propositions.
 wff if- ( ph ,  ps ,  ch )
 
Definitiondf-ifp 984 Definition of the conditional operator for propositions. The expression if- ( ph ,  ps ,  ch ) is read "if  ph then  ps else  ch". See dfifp2dc 987, dfifp3dc 988, dfifp4dc 989 and dfifp5dc 990 for alternate definitions.

This definition (in the form of dfifp2dc 987) appears in Section II.24 of [Church] p. 129 (Definition D12 page 132), where it is called "conditioned disjunction". Church's 
[ ps ,  ph ,  ch ] corresponds to our if- ( ph ,  ps ,  ch ) (note the permutation of the first two variables).

This form was chosen as the definition rather than dfifp2dc 987 for compatibility with intuitionistic logic development: with this form, it is clear that if- ( ph ,  ps ,  ch ) implies decidability of  ph (ifpdc 985), which is most often what is wanted.

(Contributed by BJ, 22-Jun-2019.)

 |-  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  /\ 
 ps )  \/  ( -.  ph  /\  ch )
 ) )
 
Theoremifpdc 985 The conditional operator for propositions implies decidability. (Contributed by Jim Kingdon, 25-Jan-2026.)
 |-  (if- ( ph ,  ps ,  ch )  -> DECID  ph )
 
Theoremifp2 986 Forward direction of dfifp2dc 987. This direction does not require decidability. (Contributed by Jim Kingdon, 25-Jan-2026.)
 |-  (if- ( ph ,  ps ,  ch )  ->  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) )
 
Theoremdfifp2dc 987 Alternate definition of the conditional operator for decidable propositions. The value of if-
( ph ,  ps ,  ch ) is "if  ph then  ps, and if not  ph then  ch". This is the definition used in Section II.24 of [Church] p. 129 (Definition D12 page 132) (see comment of df-ifp 984). (Contributed by BJ, 22-Jun-2019.)
 |-  (DECID 
 ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  ->  ps )  /\  ( -.  ph  ->  ch ) ) ) )
 
Theoremdfifp3dc 988 Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.)
 |-  (DECID 
 ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( ph  ->  ps )  /\  ( ph  \/  ch ) ) ) )
 
Theoremdfifp4dc 989 Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.)
 |-  (DECID 
 ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( -.  ph  \/  ps )  /\  ( ph  \/  ch ) ) ) )
 
Theoremdfifp5dc 990 Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019.)
 |-  (DECID 
 ph  ->  (if- ( ph ,  ps ,  ch )  <->  ( ( -.  ph  \/  ps )  /\  ( -.  ph  ->  ch ) ) ) )
 
Theoremifpdfbidc 991 Define the biconditional as conditional logic operator. (Contributed by RP, 20-Apr-2020.) (Proof shortened by Wolf Lammen, 30-Apr-2024.)
 |-  (DECID 
 ph  ->  ( ( ph  <->  ps ) 
 <-> if- ( ph ,  ps ,  -.  ps ) ) )
 
Theoremanifpdc 992 The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor 993. (Contributed by BJ, 30-Sep-2019.)
 |-  (DECID 
 ph  ->  ( ( ps 
 /\  ch )  -> if- ( ph ,  ps ,  ch )
 ) )
 
Theoremifpor 993 The conditional operator implies the disjunction of its possible outputs. Dual statement of anifpdc 992. (Contributed by BJ, 1-Oct-2019.)
 |-  (if- ( ph ,  ps ,  ch )  ->  ( ps  \/  ch )
 )
 
Theoremifpnst 994 Conditional operator for the negation of a proposition. (Contributed by BJ, 30-Sep-2019.) (Proof shortened by Wolf Lammen, 5-May-2024.)
 |-  (STAB 
 ph  ->  (if- ( ph ,  ps ,  ch )  <-> if- ( -.  ph ,  ch ,  ps ) ) )
 
Theoremifptru 995 Value of the conditional operator for propositions when its first argument is true. Analogue for propositions of iftrue 3607. This is essentially dedlema 975. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 10-Jul-2020.)
 |-  ( ph  ->  (if- ( ph ,  ps ,  ch )  <->  ps ) )
 
Theoremifpfal 996 Value of the conditional operator for propositions when its first argument is false. Analogue for propositions of iffalse 3610. This is essentially dedlemb 976. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 25-Jun-2020.)
 |-  ( -.  ph  ->  (if- ( ph ,  ps ,  ch )  <->  ch ) )
 
Theoremifpiddc 997 Value of the conditional operator for propositions when the same proposition is returned in either case. Analogue for propositions of ifiddc 3638. (Contributed by BJ, 20-Sep-2019.)
 |-  (DECID 
 ph  ->  (if- ( ph ,  ps ,  ps )  <->  ps ) )
 
Theoremifpbi123d 998 Equivalence deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 17-Apr-2024.)
 |-  ( ph  ->  ( ps 
 <->  ta ) )   &    |-  ( ph  ->  ( ch  <->  et ) )   &    |-  ( ph  ->  ( th  <->  ze ) )   =>    |-  ( ph  ->  (if- ( ps ,  ch ,  th )  <-> if- ( ta ,  et ,  ze ) ) )
 
Theoremifpbi23d 999 Equivalence deduction for conditional operator for propositions. Convenience theorem for a frequent case. (Contributed by Wolf Lammen, 28-Apr-2024.)
 |-  ( ph  ->  ( ch 
 <->  et ) )   &    |-  ( ph  ->  ( th  <->  ze ) )   =>    |-  ( ph  ->  (if- ( ps ,  ch ,  th )  <-> if- ( ps ,  et ,  ze ) ) )
 
Theorem1fpid3 1000 The value of the conditional operator for propositions is its third argument if the first and second argument imply the third argument. (Contributed by AV, 4-Apr-2021.)
 |-  ( ( ph  /\  ps )  ->  ch )   =>    |-  (if- ( ph ,  ps ,  ch )  ->  ch )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >